学习概率论心得分享
篇一:如何学习概率论
不少人特别是初学者总感到概率统计难学,不知怎么才能学好,摸不着头绪,比较着急。有人还问:学概率统计有什么窍门?总之,都渴望得到一种好的学习方法,从而学好概率统计。
概率论是研究随机现象的统计规律性的数学学科。由于问题的随机性,从这个意义上讲,也可以说有点难学。这正是不少人害怕概率的原因。但随机现象是有规律可循的,概率论正是研究它的这种规律性的,只要抓住它的规律,概率论也就不难学了。
学习概率统计要抓三个基本:基本概念,基本方法,基本技巧。
基本概念包括基本定义,基本原理和定理。特别要注意如何将实际问题转化成概率模型。这就要求对实际问题的性质,特点和概率论的概率都有充分的了解和认识,这样才能将两者互相联系起来,建立实际问题的
数学模型,然后用概率论的方法解决问题。
基本方法包括基本的分析问题的方法,基本公式和基本的计算方法,这是解决问题必不可少的。它建立在对基本概率充分理解的掌握和基础上,什么样的模型用什么样的方法,这是必须搞清的。
基本技巧,实际上就是灵活巧妙地解决问题的某些方法,基本方法运用掌握的好,也能总结出一些基本技巧。基本技巧对提高学习效率是有好处的。
学习概率统计的方法要注意三多:多思,多练,多比。
多思,就是多想,多动脑筋,包括从多方面想。问题多是比较复杂的,只有多思多想,从多方面想,正着想,反着想,反复地想,才能悟出问题的实质。
多练:多练的直接意思就是多做题,做足够数量的题目,特别是不同类型的题目。必须有足够的数量,才能达到对问题的方法,熟能生巧,但多练时也要多思多想,光练不想是不行的。这里要特别提出一题多解的方法,就是一个题目要尽量多想出一些不同的方法来解决。这是一种效率高,效果好的学习方法,对提高能力,开放智力大有好处。多练时还要多总结,及时总结。
多比:多比就是多比较。同类型的问题的比较,不同类型问题的比较,自己的方法和书上的比较,和老师比较,和同学比较,等等,总之,可多方面比较,有比较才有鉴别,有比较才能有提高。这里特别提一下模仿。模仿是一种方法,也是一种能力,特别对学习困难的同学来说模仿是很有必要,很重要的。通过模仿入门,通过模仿掌握方法。当然,光模仿是不行的,要通过模仿学到知识,提高能力,达到能自主解决问题的程度。
三个基本和三多也是密切相连的,要掌握三个基本必须经过三多。基本概念要多思多想才能深刻地认识,也要多练多比才能得到加深和巩固。基本方法,基本技巧经过多练才能掌握,多练过程中也要多想多比才能掌握得更牢固,进而还可能提出更好的方法。
总之,三多是掌握三个基本的好方法。紧紧抓住三个基本,充分利用三多,就一定能把概率统计学好。
篇二:概率论 学习方法
“概率论与数理统计”的学习应注重的是概念的理解,而这正是广大学生所疏忽的,在复习时几乎有近一半以上学生对“什么是随机变量”、“为什么要引进随机变量”仍说不清楚。对于涉及随机变量的独立,不相关等概念更是无从着手,这一方面是因为高等数学处理的是“确定”的事件。如函数y=f(x),当x确定后y有确定的值与之对应。而概率论中随机变量X在抽样前是不确定的,我们只能由随机试验确定它落在某一区域中的概率,要建立用“不确定性”的思维方法往往比较困难,如果套用确定性的思维方法就会出错。由于基本概念没有搞懂,即使是十分简单的题目也难以得分。从而造成低分多的现象。另一方面由于概率论中涉及的计算技巧不多,除了古典概型,几何概型和计算二维随机变量的函数分布时如何确定积分上、下限有一些计算的难点,其他的只是数值或者积分、导数的计算。因而如果概念清楚,那么解题往往很顺利且易得到正确答案,这正是高分较多的原因。
根据上面分析,启示我们不能把高等数学的学习方法照搬到“概率统计”的学习上来,而应按照概率统计自身的特点提出学习方法,才能取得“事半功倍”的效果。下面我们分别对“概率论”和“数理统计”的学习方法提出一些建议。
一、 学习“概率论”要注意以下几个要点
1. 在学习“概率论”的过程中要抓住对概念的引入和背景的理解,例如为什么要引进“随机变量”这一概念。这实际上是一个抽象过程。正如小学生最初学数学时总是一个苹果加2个苹果等于3个苹果,然后抽象为1+2=3.对于具体的随机试验中的具体随机事件,可以计算其概率,但这毕竟是局部的,孤立的,能否将不同随机试验的不同样本空间予以统一,并对整个随机试验进行刻画?随机变量X(即从样本空间到实轴的单值实函数)的引进使原先不同随机试验的随机事件的概率都可转化为随机变量落在某一实数集合B的概率,不同的随机试验可由不同的随机变量来刻画。 此外若对一切实数集合B,知道P(X∈B)。 那么随机试验的任一随机事件的概率也就完全确定了。所以我们只须求出随机变量X的分布P(X∈B)。 就对随机试验进行了全面的刻画。它的研究成了概率论的研究中心课题。故而随机变量的引入是概率论发展历史中的一个重要里程碑。类似地,概率公理化定义的引进,分布函数、离散型和连续型随机变量的分类,随机变量的数学特征等概念的引进都有明确的背景,在学习中要深入理解体会。
2. 在学习“概率论”过程中对于引入概念的内涵和相互间的联系和差异要仔细推敲,例如随机变量概念的内涵有哪些意义:它是一个从样本空间到实轴的单值实函数X(w),但它不同于一般的函数,首先它的定义域是样本空间,不同随机试验有不同的样本空间。而它的取值是不确定的,随着试验结果的不同可取不同值,但是它取某一区间的概率又能根据随机试验予以确定的,而我们关心的通常只是它的取值范围,即对于实轴上任一B,计算概率P(X∈B),即随机变量X的分布。只有理解了随机变量的内涵,下面的概念如分布函数等等才能真正理解。又如随机事件的互不相容和相互独立两个概念通常会混淆,前者是事件的运算性质,后者是事件的概率性质,但它们又有一定联系,如果P(A)。P(B)>0,则A,B独立则一定相容。类似地,如随机变量的独立和不相关等概念的联系与差异一定要真正搞懂。
3. 搞懂了概率论中的各个概念,一般具体的计算都是不难的,如F(x)=P(X≤x),EX,DX等按定义都易求得。计算中的难点有古典概型和几何概型的概率计算,二维随机变量的边缘分布fx(x)=∫-∞∞
f(x,y)dy,事件B的概率P((X,Y)∈B)=∫∫Bf(x,y)dxdy,卷积公式等的计算,它们形式上很简单,但是由于f(x,y)通常是分段函数,真正的积分限并不再是(-∞,∞)或B,这时如何正确确定事实上的'积分限就成了正确解题的关键,要切实掌握。
4. 概率论中也有许多习题,在解题过程中不要为解题而解题,而应理解题目所涉及的概念及解题的目的,至于具体计算中的某些技巧基本上在高等数学中都已学过。因此概率论学习的关键不在于做许多习题,而要把精力放在理解不同题型涉及的概念及解题的思路上去。这样往往能“事半功倍”。
二、 学习“数理统计”要注意以下几个要点
1. 由于数理统计是一门实用性极强的学科,在学习中要紧扣它的实际背景,理解统计方法的直观含义。了解数理统计能解决那些实际问题。对如何处理抽样数据,并根据处理的结果作出合理的统计推断,该结论的可靠性有多少要有一个总体的思维框架,这样,学起来就不会枯燥而且容易记忆。例如估计未知分布的数学期望,就要考虑到① 如何寻求合适的估计量的途径,②如何比较多个估计量的优劣?这样,针对①按不同的统计思想可推出矩估计和极大似然估计,而针对②又可分为无偏估计、有效估计、相合估计,因为不同的估计名称有着不同的含义,一个具体估计量可以满足上面的每一个,也可能不满足。掌握了寻求估计的统计思想,具体寻求估计的步骤往往是“套路子”的,并不困难,然而如果没有从根本上理解,仅死背套路子往往会出现各种错误。
2. 许多同学在学习数理统计过程中往往抱怨公式太多,置信区间,假设检验表格多而且记不住。事实上概括起来只有八个公式需要记忆,而且它们之间有着紧密联系,并不难记,而区间估计和假设检验中只是这八个公式的不同运用而已,关键在于理解区间估计和假设检验的统计意义,在理解基础上灵活运用这八个公式,完全没有必要死记硬背。
篇三:04183概率论学习方法
通学宝典
你好,下面给你介绍一下通过概率论与数理统计的关键学习方法:
1、概率论的很多题都是综合的,有时会用到很多章的知识。如果你从未看过教材,请先通学一遍66个知识点(也就是只学知识点,暂不学知识点下面的练习题。)这样对整体有一个了解后,再回头来仔细练习每一个题。
2、学习概率论时,不同于一般的记忆课程。★★最重要的一点是,要自己动笔在纸上练习★★,如果只是看,可能你觉得看懂了,但实际做题时,还是不知道如何下笔。
3、学习精华版课程时,在看到题目后,不要先去看答案,一定要先想一想这个题自己觉得该如何解答(即使一点都不会,也一定要先想一想,只有这样,当你看了答案后才能印象深刻!),并在纸上写一下自己的解题,然后再看精华版中的答案与详细解析,看懂后再在纸上写一遍解题过程。
★★切记,一定要动笔练习!!!练习时,不能只是随便在纸上写几步,不要怕麻烦,一定要写出完整的解题过程。写的时候一定要有自己的思考,不能像抄书一样。
(★★注意:我们的精华版课程是在总结几十套历年试题基础上,挑选出来的典型题,集中时间练习并弄懂课程中的题,是通过考试的保证。暂时不要去练习其他任何地方的习题,包括教材后的习题也先不要练习。学懂精华版课程后,可以做一下历年试题,来检验一下自己学的效果。)
4、个别知识点感觉太难懂的,确实搞不懂的,可以先略过。学了后面的再回头来学那几个难的,应该就能学懂了。这样可以在保证质量的情况下,提高一些速度。
5、对于记公式,有一种很好的方法,你可以将精华版课程中标为红色的公式集中写在一个卡片上,放在身上,随时拿出来记一下。很多同学上下班的途中,回忆一下公式,记不起来时,就拿出卡片来看一下,效果非常好!!
你一定要严格按我上面说的方法来学习,刚开始可能觉得有点麻烦。但这是之前很多同学通过实践后的成功总结,只要你坚持使用,也一定能考过。
问老师
学习精华版课程时,有不懂的,请注意看一下课程中的“详细解析”。如果还是看不懂,请通过截图来提问(第几章第几个知识点)。如果我不在线或正在回答其他同学的问题,请留言即可。我会尽快回复你。
你学完一遍了,可以做一下历年试题。后面附有评分标准答案。
如果有不会做的,可以找到课程中相应的知识点复习一下。也可以请教在线老师比如201410.12(2014年10月试题第12题)+问题。
每次考试都会出现少数比较难的题。如果你想考高分,那肯定要把教材全面学通。 如果只是想考过,你一定要集中时间把精华版中重点搞懂,这样可以保证你通过考试。
你要权衡一下你的时间。
注意:数学中的定义或公式等,为了表达得严谨,会包含有很多条件、符号与各种描述,如果没有很强的数学基础,对数学定义的透彻理解将非常困难。对于自考来说,不用去深究那些复杂的定义,请直接练习精华版中的考点,学会如何运用即可。
本书重点章节介绍
概率论共9章,其中的1、2、4、8章是重点章,这几章考试约占75分。
篇四:如何学好概率论
率论和数理统计的思想方法已经渗透到自然科学和社会科学的许多领域,应用范围相当广泛。所以概率论的学习对我们来说很重要,而我们该去如何学好概率论那?
一学期的概率论学习很快就过去了,经过了一个学期的概率论学习,让我了解到概率论是一门逻辑性很强的学科,学好概率论可以提高分析问题、解决问题,搜集和处理信息的能力。怎样才能学好概率论?可从以下方面着手。上课认真听讲,课后及时复习。适当做题,养成良好的解题习惯。学习新知识,要特别重视课上的学习效率,寻求正确的学习方法。上课时要紧跟老师思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同,同时要注意做笔记。课后做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,不要边做题边翻课本,那样只是暂时的明白,离开书什么也不知道,认真独立完成作业,勤于思考。还应该自己独自认真分析题目,尽量自己解决所有老师安排的习题,适当还做点相关资料。经常进行整理和归纳总结。 要多做题目,熟悉各种题型。首先要从基础题入手,以课本上的例习题为准,再找一些课外的习题,以帮助开拓思路,提高自己分析、解决问题的能力。对于一些易错题,要备有错题本,记下自己的错误解法并且写上正确的解法,两者比较找出自己的错误所在,及时更正。平时要养成良好的解题习惯,让自己的精力高度集中,思维敏捷。如果平时解题时随便、粗心、大意等,所以在平时养成良好的解题习惯是非常重要的。
学习兴趣是学生心理上的一种学习需要,而学习需要是学习动机的主要因素,学习动机则是进行学习的内驱力。概率论作为文化基础课,多数学生认为其课抽象、枯燥无味,无新鲜感而应用价值很大。激发起学习的兴趣,这样会有高的学习质量。因此在概率论的学习过程中,要始终注意培养学习的兴趣,使自己既学到必要的知识,又享受到一定的学习乐趣,达到提高学习质量的目的。然而各门课程的特点不同,培养自己学习兴趣的途径和方法也不尽相同,但是深入钻研教材,根据教材的内容和特点,挖出潜在的有利于培养自己学习兴趣的积极因素并加以充分利用,这一点是共同的。由于《概率论与数理统计》所研究的问题渗透到我们生活的方方面面,每一个理论都有其直观背景。因此,在学习中,应该致力于从多方面入手,去激发自己的兴趣,使自己在体会每个基本概念、定理和公式的产生过程中,掌握概率论与数理统计解题的思想和方法。学生实际上处于一种被动接受教师所提供知识的地位,所以我们要主动去提高自己的自学能力,培养了自己分析、辩论、理论联系实际、与他人合作等综合能力。总之,在概率论与数理统计学习中,教师“施教之功,贵在引导”,即引导学生去发现生活中的随机现象所隐藏的规律性,掌握概率论与数理统计研究问题的方法,而重点还在于我们自己。
概率论与数理统计是一门有着广泛应用的数学学科,因此在教学中我们应准确把握这门课与自己所学专业的结合点,突出其应用性。在学习过程中,将统计理论与实际问题相结合,培养自己用所学的知识去解决具体实际问题的能力及理论联系实际的作风,从而使自己进一步深化理解统计中的基本概念和基本原理。用时也要培养自己的综合素质和创新能力,仅靠课内教学是不可能完全掌握的。在学习中,要紧紧围绕自己的目标,把课内教学和课外活动作为一个整体来考虑,进行优化设计,形成结合。学生自主成立的概率论与数理统计课外兴趣小组。小组活动的宗旨,是利用课余时间,通过定期组织活动,激发大家的学习兴趣,探讨热点、难点问题,加深对理论知识的学习和理解,拓宽知识面,锻炼思考问题和研究问题的能力。组织课外兴趣小组这种方法对于提高学习效果,提高学员综合素质和创新能力有显著成效。
经过老师和学生自己的共同努力,相信一定会在学习概率论中取得好的成效的。
篇五:概率论与数理统计学习体会
院 校 北京化工大学
专 业 工商管理(人力资源方向)
姓 名 史伟
学 号 011
时 间 201X年11月20日 成 绩
这学期学习《概率论与数理统计》这门课,在高中的时候,我们就接触过简单的概率,知道事物的随机现象,即条件相同,事情的结果却不确定,这种不确定现象就叫做随机现象。这个课程内容分为两个部分:概率论和数理统计。这两部分有着紧密的联系。在概率论中,我们研究的的随机变量,都是在假定分布已知的情况下研究它的性质和特点;而在数理统计中,是在随机变量分布未知的前提下通过对所研究的随机变量进行重复独立的观察,并对观察值对这些数据进行分析,从而对所研究的随机变量的分布做出推断。因此,概率论可以说是数理统计的基础。
一、学习价值
通过简单的学习,我掌握到,概率统计是真正把实际为题转化为数学问题的学问, 因为它解决的并不是单纯的数学问题,而且不是给你一个命题让你去解决,是让你去构思命题,进而构建模型来想法设法解决实际问题。在实际应用中,就更加需要去想、去假设,对问题需要有更深层次的思考,因此使概率论和数理统计这门课学起来比微积分和线性代数更加吃力,但也比它们更加实用,更贴近实际。
概率论产生于十七世纪,本来是由保险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论中问题的源泉。
早在1654年,有一个赌徒梅累向当时的数学家帕斯卡提出一个使他苦恼了很久的问题:“两个赌徒相约赌若干局,谁先赢 m局就算赢,全部赌本就归谁。但是当其中一个人赢了 a (a<m)局,另一个人赢了 b(b<m)局的时候,赌博中止。问:赌本应该如何分法才合理?”后者曾在1642年发明了世界上第一台机械加法计算机。
三年后,也就是1657年,荷兰著名的天文、物理兼数学家惠更斯企图自己解决这一问题,结果写成了《论机会游戏的计算》一书,这就是最早的概率论著作。
近几十年来,随着科技的蓬勃发展,概率论大量应用到国民经济、工农业生产及各学科领域。许多兴起的应用数学如信息论、对策论、排队论、控制论、等,都是以概率论作为基础的。
概率论和数理统计是一门随机数学分支,它们是密切联系的同类学科。但是应该指出,概率论、数理统计、统计方法又都各有它们自己所包括的不同内容。 概率论——是根据大量同类随机现象的统计规律,对随机现象出现某一结果的可能性作出一种客观的科学判断,对这种出现的可能性大小做出数量上的描述;比较这些可能性的大小、研究它们之间的联系,从而形成一整套数学理论和方法。
数理统计——是应用概率的理论来研究大量随机现象的规律性;对通过科学安排的一定数量的实验所得到的统计方法给出严格的理论证明;并判定各种方法应用的条件以及方法、公式、结论的可靠程度和局限性。使我们能从一组样本来判定是否能以相当大的概率来保证某一判断是正确的,并可以控制发生错误的概率。
统计方法——是一上提供的方法在各种具体问题中的应用,它不去注意这些方法的的理论根据、数学论证。
应该指出,概率统计在研究方法上有它的特殊性,和其它数学学科的主要不同点有:
第一,由于随机现象的统计规律是一种集体规律,必须在大量同类随机现象中才能呈现出来,所以,观察、试验、调查就是概率统计这门学科研究方法的基石。但是,作为数学学科的一个分支,它依然具有本学科的定义、公理、定理的,这些定义、公理、定理是来源于自然界的随机规律,但这些定义、公理、定理是确定的,不存在任何随机性。
第二,在研究概率统计中,使用的是“由部分推断全体”的统计推断方法。这是因为它研究的对象——随机现象的范围是很大的,在进行试验、观测的时候,
不可能也不必要全部进行。但是由这一部分资料所得出的一些结论,要全体范围内推断这些结论的可靠性。
第三,随机现象的随机性,是指试验、调查之前来说的。而真正得出结果后,对于每一次试验,它只可能得到这些不确定结果中的某一种确定结果。我们在研究这一现象时,应当注意在试验前能不能对这一现象找出它本身的内在规律。
让我比较感兴趣的是,概率统计在实际中的应用。例如一个公司的决策,就需要用到概率统计。一个公司如果投产,通过对设备生产能力,对市场估计,与如果不投产,对设备生产能力和市场估计的比较。最终做出公司是否投产的决策。
通过这种方法,可以很快的找到怎样投资怎么去决策利益最大。
二、学习方法和注意点
学习概率论与数理统计需要注意很多东西,以下就是我从其他参考书上学习到的。
(一)、 学习“概率论”要注意以下几个要点
1.在学习“概率论”的过程中要抓住对概念的引入和背景的理解,例如为什么要引进“随机变量”这一概念。这实际上是一个抽象过程。正如小学生最初学数学时总是一个苹果加2个苹果等于3个苹果,然后抽象为1+2=3.对于具体的随机试验中的具体随机事件,可以计算其概率,但这毕竟是局部的,孤立的,能否将不同随机试验的不同样本空间予以统一,并对整个随机试验进行刻画?随机变量X(即从样本空间到实轴的单值实函数)的引进使原先不同随机试验的随机事件的概率都可转化为随机变量落在某一实数集合B的概率,不同的随机试验可由不同的随机变量来刻画。 此外若对一切实数集合B,知道P(X∈B)。那么随机试验的任一随机事件的概率也就完全确定了。所以我们只须求出随机变量X的分布P(X∈B)。 就对随机试验进行了全面的刻画。它的研究成了概率论的研究中心课题。故而随机变量的引入是概率论发展历史中的一个重要里程碑。类似地,概率公理化定义的引进,分布函数、离散型和连续型随机变量的分类,随机变量的数学特征等概念的引进都有明确的背景,在学习中要深入理解体会。
2. 在学习“概率论”过程中对于引入概念的内涵和相互间的联系和差异要仔细推敲,例如随机变量概念的内涵有哪些意义:它是一个从样本空间到实轴的单值实函数X(w),但它不同于一般的函数,首先它的定义域是样本空间,不同随机试验有不同的样本空间。而它的取值是不确定的,随着试验结果的不同可取不同值,但是它取某一区间的概率又能根据随机试验予以确定的,而我们关心的通常只是它的取值范围,即对于实轴上任一B,计算概率P(X∈B),即随机变量X的分布。只有理解了随机变量的内涵,下面的概念如分布函数等等才能真正理解。又如随机事件的互不相容和相互独立两个概念通常会混淆,前者是事件的运算性质,后者是事件的概率性质,但它们又有一定联系,如果P(A)。P(B)>0,则A,B独立则一定相容。类似地,如随机变量的独立和不相关等概念的联系与差异一定要真正搞懂。
3. 搞懂了概率论中的各个概念,一般具体的计算都是不难的,如F(x)=P(X≤x),EX,DX等按定义都易求得。计算中的难点有古典概型和几何概型的概率计算,二维随机变量的边缘分布fx(x)=∫-∞∞ f(x,y)dy,事件B的概率P((X,Y)∈B)=∫∫Bf(x,y)dxdy,卷积公式等的计算,它们形式上很简单,但是由于f(x,y)通常是分段函数,真正的积分限并不再是(-∞,∞)或B,这时如何正确确定事实上的积分限就成了正确解题的关键,要切实掌握。
4. 概率论中也有许多习题,在解题过程中不要为解题而解题,而应理解题目所涉及的概念及解题的目的,至于具体计算中的某些技巧基本上在高等数学中都已学过。因此概率论学习的关键不在于做许多习题,而要把精力放在理解不同题型涉及的概念及解题的思路上去。这样往往能“事半功倍”。
(二)、 学习“数理统计”要注意以下几个要点
1. 由于数理统计是一门实用性极强的学科,在学习中要紧扣它的实际背景,理解统计方法的直观含义.了解数理统计能解决那些实际问题.对如何处理抽样数据,并根据处理的结果作出合理的统计推断,该结论的可靠性有多少要有一个总体的思维框架,这样,学起来就不会枯燥而且容易记忆.例如估计未知分布的数学期望,就要考虑到① 如何寻求合适的估计量的途径,②如何比较多个估计量的优劣?这样,针对①按不同的统计思想可推出矩估计和极大似然估计,而针对②又可分为无偏估计、有效估计、相合估计,因为不同的估计名称有着不同的含义,一个具体估计量可以满足上面的每一个,也可能不满足.掌握了寻求估计的统计思想,具体寻求估计的步骤往往是“套路子”的,并不困难,然而如果没有从根本上理解,仅死背套路子往往会出现各种错误.
2. 许多同学在学习数理统计过程中往往抱怨公式太多,置信区间,假设检验表格多而且记不住.事实上概括起来只有八个公式需要记忆,而且它们之间有着紧密联系,并不难记,而区间估计和假设检验中只是这八个公式的不同运用而已,关键在于理解区间估计和假设检验的统计意义,在理解基础上灵活运用这八个公式,完全没有必要死记硬背。
【学习概率论心得分享】相关文章:
《概率论与数理统计》的课程学习心得06-15
学习礼仪心得分享03-16
培训学习心得分享06-18
英语学习心得分享07-12
初一学习心得的分享07-09
ALP的学习心得分享07-12
分享普通话的学习心得06-16
学习生活的经验和心得分享05-26
分享学习心得发言稿11-12