物理知识点总结

时间:2024-06-01 16:50:24 总结 我要投稿

物理知识点总结[必备]

  总结是指社会团体、企业单位和个人在自身的某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而肯定成绩,得到经验,找出差距,得出教训和一些规律性认识的一种书面材料,写总结有利于我们学习和工作能力的提高,不妨坐下来好好写写总结吧。但是总结有什么要求呢?下面是小编收集整理的物理知识点总结,希望能够帮助到大家。

物理知识点总结[必备]

物理知识点总结1

  一、重力及其相互作用

  1、力是物体之间的相互作用,有力必有施力物体和受力物体。力的大小、方向、作用点叫力的三要素。用一条有向线段把力的三要素表示出来的方法叫力的图示。

  按照力命名的依据不同,可以把力分为:

  ①按性质命名的力(例如:重力、弹力、摩擦力、分子力、电磁力等。)

  ②按效果命名的力(例如:拉力、压力、支持力、动力、阻力等)。

  力的作用效果:

  ①形变;②改变运动状态。

  2、重力:

  由于地球的吸引而使物体受到的力。重力的大小G=mg,方向竖直向下。作用点叫物体的重心;重心的位置与物体的质量分布和形状有关。质量均匀分布,形状规则的物体的重心在其几何中心处。薄板类物体的重心可用悬挂法确定,

  注意:重力是万有引力的一个分力,另一个分力提供物体随地球自转所需的向心力,在两极处重力等于万有引力。由于重力远大于向心力,一般情况下近似认为重力等于万有引力。

  3、四种基本相互作用

  万用引力相互作用、电磁相互作用、强相互作用、弱相互作用

  二、弹力:

  (1)内容:发生形变的物体,由于要恢复原状,会对跟它接触的且使其发生形变的物体产生力的作用,这种力叫弹力。

  (2)条件:①接触;②形变。但物体的形变不能超过弹性限度。

  (3)弹力的方向和产生弹力的那个形变方向相反。(平面接触面间产生的弹力,其方向垂直于接触面;曲面接触面间产生的弹力,其方向垂直于过研究点的曲面的切面;点面接触处产生的弹力,其方向垂直于面、绳子产生的弹力的方向沿绳子所在的直线。)

  (4)大小:

  ①弹簧的弹力大小由F=kx计算,

  ②一般情况弹力的大小与物体同时所受的其他力及物体的.运动状态有关,应结合平衡条件或牛顿定律确定。

  滑动摩擦力

  1、两个相互接触的物体有相对滑动时,物体之间存在的摩擦叫做滑动摩擦。

  2、在滑动摩擦中,物体间产生的阻碍物体相对滑动的作用力,叫做滑动摩擦力。

  3、滑动摩擦力f的大小跟正压力N(≠G)成正比。即:f=μN

  4、μ称为动摩擦因数,与相接触的物体材料和接触面的粗糙程度有关。0<μ<1。

  5、滑动摩擦力的方向总是与物体相对滑动的方向相反,与其接触面相切。

  6、条件:直接接触、相互挤压(弹力),相对运动/趋势。

  7、摩擦力的大小与接触面积无关,与相对运动速度无关。

  8、摩擦力可以是阻力,也可以是动力。

  9、计算:公式法/二力平衡法。

  研究静摩擦力

  1、当物体具有相对滑动趋势时,物体间产生的摩擦叫做静摩擦,这时产生的摩擦力叫静摩擦力。

  2、物体所受到的静摩擦力有一个最大限度,这个最大值叫最大静摩擦力。

  3、静摩擦力的方向总与接触面相切,与物体相对运动趋势的方向相反。

  4、静摩擦力的大小由物体的运动状态以及外部受力情况决定,与正压力无关,平衡时总与切面外力平衡。0≤F=f0≤fm

  5、最大静摩擦力的大小与正压力接触面的粗糙程度有关。fm=μ0·N(μ≤μ0)

  6、静摩擦有无的判断:概念法(相对运动趋势);二力平衡法;牛顿运动定律法;假设法(假设没有静摩擦)。

物理知识点总结2

  第三章相互作用第一节重力基本相互作用力和力的图示力定义:物体与物体之间的相互作用。单位:牛顿,简称牛(N)。力的图示定义:可以用带箭头的线段表示力。它的长短表示力的大小,它的指向表示力的方向,箭尾(或箭头)表示力的作用点,线段所在的直线叫做力的作用线。定义:由于地球的吸引而使物体受到的力。公式:G=mg重力是矢量,既有大小,又有方向。重心定义:一个物体各部分受到的重力作用集中的一点。质量均匀分布的物体,常称均匀物体,中心的位置只跟物体的形状有关。质量分布不均匀的物体,中心的位置除了跟物体的形状有关,还跟物体内质量的分布有关。四种基本相互作用万有引力强相互作用弱相互作用电磁相互作用第二节弹力弹性形变和弹力形变定义:物体在力的作用下形状或体积发生改变。弹性形变:物体在形变后能恢复原状的形变。弹力定义:发生弹性形变的物体由于要恢复原状,对与它接触的物体产生的力的作用。弹性限度:物体受到外力作用,在内部所产生的抵抗外力的相互作用力不超过某一极限值时,若外力作用停止,其形变可全部消失而恢复原状,这个极限值称为“弹性限度”。产生弹力的物体是发生弹性形变的物体。方向:垂直于接触面,指向形变物体恢复原状的方向。几种弹力压力和支持力拉力重力重力胡克定律弹力的大小跟形变的大小有关系,形变越大,弹力也越大,形变消失,弹力随之消失。公式:F=kxk弹簧的劲度系数,单位是牛顿每米(N/m)。第三节摩擦力摩擦力:连个相互接触的物体,当它们发生相对运动或具有相对运动的趋势时,在接触面上所产生的阻碍相对运动或相对运动趋势的力。滚动摩擦力:一个物体在另一个物体表面上滚动时产生的摩擦。静摩擦力定义:两个物体之间只有相对运动趋势,而没有相对运动时产生的摩擦力。方向:沿着接触面,跟物体相对运动趋势的方向相反。静摩擦力的增大有个限度,最大值在数值上等于物体刚刚开始运动时的拉力。只要一个物体与另一物体间没有产生相对于运动,静摩擦力的大小就随着前者所受的力的`增大而增大,并与这个力保持大小。滑动摩擦力定义:当一个物体在另一个物体表面滑动的时候,所受到的另一个物体阻碍它滑动的力。方向:沿着接触面,跟物体的相对运动方向的方向相反。滑动摩擦力的大小跟压力成正比。公式:F=μFNμ动摩擦因数,它的数值跟相互接触的两个物体的材料有关。第四节力的合成合力:一个力,如果它产生的效果与几个力共同作用时产生效果相同,那么这个力就叫做几个力的合力。分力:如果一个力作用于某一物体,对物体运动产生的效果相当于另外的几个力同时作用于该物体时产生的效果,则这几个力就是原先那个作用力的分力。力的合成定义:求几个力的合力的过程。平行四边形定则:两个力合成时,以表示这两个力的线段为邻边做平行四边形,这两个邻边之间的对角线就代表合力的大小和方向。余弦定理:F=F1+F2+2F1F2cosθ共点力共点力一个物体受到几个外力的作用,如果这几个力有共同的作用点或者这几个力的作用线交于一点,这几个外力称为共点力。既不作用在同一点上,延长线也不交于一点的一组力。222非共点力第五节力的分解力的分解定义:求一个力的分力的过程。矢量相加的法则三角形定则矢量把两个矢量首尾相接从而求出合矢量的方法。既有大小又有方向,相加时遵从平行四边形定则(或三角形定则)的物理量。只有大小没有方向,求和时按照算术法则相加的物理量。标量

物理知识点总结3

  一、本节学习指导

  本节知识较为简单,同学们多看即可,要注意温度计的使用原则。本节有配套免费学习视频。

  二、知识要点

  1、物体的冷热程度叫温度,测量温度的仪器叫温度计。

  2、温度计

  (1)温度计原理:是利用了水银、酒精、煤油等液体的热胀冷缩性质制成的。

  (2)基本结构:玻璃外壳、液体泡、毛细管等。

  3、摄氏温度

  (1)单位符号:摄氏度用符号℃来表示。

  (2)摄氏温度是这样规定的:

  把一标准大气压下冰水混合物的温度规定为0度;把一标准大气压下的沸水规定为100度;

  0度和100度之间分成100等分,每一等分为1摄氏度;

  (3)读法:-6℃读作负6摄氏度或零下6摄氏度。

  4、温度计的使用【重点】

  (1)使用温度计之前应:观察它的`量程;认清它的最小刻度。

  (2)在温度计测量液体温度时,正确的方法是:

  ①温度计的玻璃泡要全部浸入被测液体中,不要碰到容器底或容器壁;②温度计玻璃泡浸入被测液体后要稍候一会儿,待温度计的示数稳定后再读数;③读数时玻璃泡要继续留在被测液体中,视线与温度计中的液柱上表面相平。

  加速度学习网我的学习也要加速

  例:下图中,对温度计的使用错误的是:

  分析:图1中,①读数时玻璃泡没有浸在液体内;②读数时视线应与温度计的液柱上表面平行,而他是斜视,所以错误。图2中,①温度计碰到了杯底部;②同图一的错误②。

  5、温度计的分类

  (1)实验室用的温度计

  量程:-20℃~110℃,分度值:1℃,特殊结构:无缩口,用途:测液体温度,使用方法:读数时不能离开被测液体。

  (2)体温计

  量程:35℃~42℃,分度值:0.1℃,特殊结构:有缩口,用途:测体温,使用方法:读数时可离开人体,使用前要用了甩几下。

  (3)寒暑表

  量程:-60℃~50℃,分度值:1℃,特殊结构:无缩口,用途:测气温,使用方法:读数时不能离开被测气体。

  三、经验之谈:

  本节考得最多的是温度计的使用规则,注意三条:

  1、读数的视线要与液柱上平面平行。

  2、温度计不能碰到杯壁,容易损坏仪器。

  3、温度计在读数时必须将玻璃泡浸在液体中。

  在物理实验中,同学们一定要对仪器的各个部位的名称要叫得出,很多同学考试中知道错在哪儿,却叫不出名字,这样的丢分是非常不应该的。

  有疑问的题目请发在“51加速度学习网”上,让我们来为你解答

物理知识点总结4

  《压强和浮力》

  一、固体的压力和压强

  1、压力:

  ⑴定义:垂直压在物体表面上的力叫压力。

  ⑵压力并不都是由重力引起的,通常把物体放在桌面上时,如果物体不受其他力,则压力F=物体的重力G

  ⑶固体可以大小方向不变地传递压力。

  ⑷重为G的物体在承面上静止不动。指出下列各种情况下所受压力的大小。

  2、研究影响压力作用效果因素的实验:

  课本甲、乙说明:受力面积相同时,压力越大压力作用效果越明显。乙、丙说明压力相同时、受力面积越小压力作用效果越明显。概括这两次实验结论是:压力的作用效果与压力和受力面积有关。本实验研究问题时,采用了控制变量法。

  3、压强:

  ⑴定义:物体单位面积上受到的压力叫压强。

  ⑵物理意义:压强是表示压力作用效果的物理量

  ⑶公式p=F/S其中各量的单位分别是:p:帕斯卡(Pa);F:牛顿(N)S:米2(m2)。

  A使用该公式计算压强时,关键是找出压力F(一般F=G=mg)和受力面积S(受力面积要注意两物体的接触部分)。

  B特例:对于放在桌子上的直柱体(如:圆柱体、正方体、长放体等)对桌面的压强p=ρgh

  ⑷压强单位Pa的认识:一张报纸平放时对桌子的压力约0.5Pa。成人站立时对地面的压强约为:1.5×104Pa。它表示:人站立时,其脚下每平方米面积上,受到脚的压力为:1.5×104N

  ⑸应用:当压力不变时,可通过增大受力面积的方法来减小压强如:铁路钢轨铺枕木、坦克安装履带、书包带较宽等。也可通过减小受力面积的方法来增大压强如:缝一针做得很细、菜刀刀口很薄

  4、一容器盛有液体放在水平桌面上,求压力压强问题:

  处理时:把盛放液体的容器看成一个整体,先确定压力(水平面受的压力F=G容+G液),后确定压强(一般常用公式p=F/S)。

  二、液体的压强

  1、液体内部产生压强的原因:液体受重力且具有流动性。

  2、测量:压强计用途:测量液体内部的压强。

  3、液体压强的规律:

  ⑴液体对容器底和测壁都有压强,液体内部向各个方向都有压强;

  ⑵在同一深度,液体向各个方向的压强都相等;

  ⑶液体的压强随深度的增加而增大;

  ⑷不同液体的压强与液体的密度有关。

  4、压强公式:

  ⑴推导压强公式使用了建立理想模型法,前面引入光线的概念时,就知道了建立理想模型法,

  ⑵推导过程:(结合课本)

  液柱体积V=Sh;质量m=ρV=ρSh

  液片受到的压力:F=G=mg=ρShg.

  液片受到的压强:p=F/S=ρgh

  ⑶液体压强公式p=ρgh说明:

  A、公式适用的条件为:液体

  B、公式中物理量的单位为:p:Pa;g:N/kg;h:m

  C、从公式中看出:液体的压强只与液体的密度和液体的深度有关,而与液体的质量、体积、重力、容器的底面积、容器形状均无关。的帕斯卡破桶实验充分说明这一点。

  D、液体压强与深度关系图象:

  5、计算液体对容器底的压力和压强问题:

  一般方法:㈠首先确定压强p=ρgh;㈡其次确定压力F=pS

  特殊情况:压强:对直柱形容器可先求F用p=F/S

  压力:①作图法②对直柱形容器F=G

  6、连通器:⑴定义:上端开口,下部相连通的容器

  ⑵原理:连通器里装一种液体且液体不流动时,各容器的液面保持相平

  ⑶应用:茶壶、锅炉水位计、乳牛自动喂水器、船闸等都是根据连通器的原理来工作的。

  三、大气压

  1、概念:大气对浸在它里面的物体的压强叫做大气压强,简称大气压,一般有p0表示。说明:“大气压”与“气压”(或部分气体压强)是有区别的,如高压锅内的气压——指部分气体压强。高压锅外称大气压。

  2、产生原因:因为空气受重力并且具有流动性。

  3、大气压的存在——实验证明:

  历的实验——马德堡半球实验。

  小实验——覆杯实验、瓶吞鸡蛋实验、皮碗模拟马德堡半球实验。

  4、大气压的实验测定:托里拆利实验。

  (1)实验过程:在长约1m,一端封闭的玻璃管里灌满水银,将管口堵住,然后倒插在水银槽中放开堵管口的手指后,管内水银面下降一些就不在下降,这时管内外水银面的高度差约为760mm。

  (2)原理分析:在管内,与管外液面相平的地方取一液片,因为液体不动故液片受到上下的压强平衡。即向上的大气压=水银柱产生的压强。

  (3)结论:大气压p0=760mmHg=76cmHg=1.01×105Pa(其值随着外界大气压的变化而变化)

  (4)说明:

  A实验前玻璃管里水银灌满的目的是:使玻璃管倒置后,水银上方为真空;若未灌满,则测量结果偏小。

  B本实验若把水银改成水,则需要玻璃管的长度为10.3m

  C将玻璃管稍上提或下压,管内外的高度差不变,将玻璃管倾斜,高度不变,长度变长。

  D若外界大气压为HcmHg试写出下列各种情况下,被密封气体的压强(管中液体为水银)。

  E标准大气压:支持76cm水银柱的大气压叫标准大气压。

  1标准大气压=760mmHg=76cmHg=1.01×105Pa

  2标准大气压=2.02×105Pa,可支持水柱高约20.6m

  5、大气压的特点:

  (1)特点:空气内部向各个方向都有压强,且空气中某点向各个方向的大气压强都相等。大气压随高度增加而减小,且大气压的值与地点、天气、季节、的变化有关。一般来说,晴天大气压比阴天高,冬天比夏天高。

  (2)大气压变化规律研究:在海拔3000米以内,每上升10米,大气压大约降低100Pa

  6、测量工具:

  定义:测定大气压的仪器叫气压计。

  分类:水银气压计和无液气压计

  说明:若水银气压计挂斜,则测量结果变大。在无液气压计刻度盘上标的刻度改成高度,该无液气压计就成了登山用的登高计。

  7、应用:活塞式抽水机和离心水泵。

  8、沸点与压强:内容:一切液体的沸点,都是气压减小时降低,气压增大时升高。

  应用:高压锅、除糖汁中水分。

  9、体积与压强:内容:质量一定的气体,温度不变时,气体的体积越小压强越大,气体体积越大压强越小。

  应用:解释人的呼吸,打气筒原理,风箱原理。

  ☆列举出你日常生活中应用大气压知识的几个事例?

  答:①用塑料吸管从瓶中吸饮料②给钢笔打水③使用带吸盘的挂衣勾④人做吸气运动

  浮力

  1、浮力的定义:一切浸入液体(气体)的物体都受到液体(气体)对它竖直向上的力叫浮力。

  2、浮力方向:竖直向上,施力物体:液(气)体

  3、浮力产生的原因(实质):液(气)体对物体向上的压力大于向下的压力,向上、向下的压力差即浮力。

  4、物体的浮沉条件:

  (1)前提条件:物体浸没在液体中,且只受浮力和重力。

  (2)请根据示意图完成下空。

  (3)、说明:

  ①密度均匀的物体悬浮(或漂浮)在某液体中,若把物体切成大小不等的两块,则大块、小块都悬浮(或漂浮)。

  ②一物体漂浮在密度为ρ的液体中,若露出体积为物体总体积的1/3,则物体密度为(2/3)ρ

  分析:F浮=G则:ρ液V排g=ρ物Vg

  ρ物=(V排/V)?ρ液=23ρ液

  ③悬浮与漂浮的比较

  相同:F浮=G

  不同:悬浮ρ液=ρ物;V排=V物

  漂浮ρ液>ρ物;V排

  ④判断物体浮沉(状态)有两种方法:比较F浮与G或比较ρ液与ρ物。

  ⑤物体吊在测力计上,在空中重力为G,浸在密度为ρ的液体中,示数为F则物体密度为:ρ物=Gρ/(GF)

  ⑥冰或冰中含有木块、蜡块、等密度小于水的物体,冰化为水后液面不变,冰中含有铁块、石块等密大于水的物体,冰化为水后液面下降。

  5、阿基米德原理:

  (1)、内容:浸入液体里的物体受到向上的浮力,浮力的.大小等于它排开的液体受到的重力。

  (2)、公式表示:F浮=G排=ρ液V排g从公式中可以看出:液体对物体的浮力与液体的密度和物体排开液体的体积有关,而与物体的质量、体积、重力、形状、浸没的深度等均无关。

  (3)、适用条件:液体(或气体)

  6.漂浮问题“五规律”:

  规律一:物体漂浮在液体中,所受的浮力等于它受的重力;

  规律二:同一物体在不同液体里漂浮,所受浮力相同;

  规律三:同一物体在不同液体里漂浮,在密度大的液体里浸入的体积小;

  规律四:漂浮物体浸入液体的体积是它总体积的几分之几,物体密度就是液体密度的几分之几;

  规律五:将漂浮物体全部浸入液体里,需加的竖直向下的外力等于液体对物体增大的浮力。

  7、浮力的利用:

  (1)、轮船:

  工作原理:要使密度大于水的材料制成能够漂浮在水面上的物体必须把它做成空心的,使它能够排开更多的水。

  排水量:轮船满载时排开水的质量。单位t由排水量m可计算出:排开液体的体积V排=m/ρ液;排开液体的重力G排=mg;轮船受到的浮力F浮=mg轮船和货物共重G=mg。

  (2)、潜水艇:

  工作原理:潜水艇的下潜和上浮是靠改变自身重力来实现的。

  (3)、气球和飞艇:

  工作原理:气球是利用空气的浮力升空的。气球里充的是密度小于空气的气体如:氢气、氦气或热空气。为了能定向航行而不随风飘荡,人们把气球发展成为飞艇。

  (4)、密度计:

  原理:利用物体的漂浮条件来进行工作。

  构造:下面的铝粒能使密度计直立在液体中。

  刻度:刻度线从上到下,对应的液体密度越来越大

  8、浮力计算题方法总结:

  (1)、确定研究对象,认准要研究的物体。

  (2)、分析物体受力情况画出受力示意图,判断物体在液体中所处的状态(看是否静止或做匀速直线运动)。

  (3)、选择合适的方法列出等式(一般考虑平衡条件)。

  计算浮力方法:

  1、示重差法,就是物体在空气中的重与物体在液体中的重的差值等于浮力。即。

  2、压力差法:应用F浮=F向上F?向下求浮力。这是浮力的最基本的原理。

  3、公式法:F浮=ρ液gV排=G排液

  4、受力分析法:如果物体在液体中处于漂浮或悬浮状态,则物体受重力和浮力作用,且此二力平衡,则F浮=G物。如果物体受三个力而处于平衡状态。则要分析出重力和浮力以外的第三个力的方向,当第三个力方向与重力同向时,则F浮=G物+F3,当第三个力方向与重力方向相反,则F浮=G物F3。

  5、排水量法:F浮=排水量(千克)×g

  轮船的满载重量,一般是以排水量表示的,即是排开水的质量,船也是浮体,根据浮体平衡条件也得:船受到的总F浮=G总,而排水量(千克)×g,就是船排开水的重,即是浮力,又是船、货的总重力。

  分子热运动

  1、扩散现象含义:不同的物质在互相接触时彼此进入对方的现象

  2、扩散现象例子气体扩散现象例子:

  (1)打开一瓶香水,很快会闻到香味;

  (2)走进花园,很远就闻到花香;

  (3)如下图,抽出玻璃板后,装空气的瓶子颜色变深,装二氧化氮的瓶子颜色变浅液体扩散现象例子:

  (4)硫酸铜溶液和清水的扩散实验

  (5)在清水中滴一滴墨水,墨水会自动散开

  (6)开水中放一块糖,过一会整杯水都会变甜固体扩散现象例子:

  (7)铅块和金块紧挨在一起五年后,彼此扩散1毫米

  (8)长期堆放媒的墙角,墙壁内较深的地方也会发黑

  (9)黑板上的子长久不檫就很难檫干净

  3、扩散现象说明了:

  (1)、一切物体的分子都在永不停息地做无规则的运动

  (2)、分子间存在间隙(典型实验:水和酒精混合后总体积变小)

  4、影响分子运动快慢的因素:温度。温度越高,分子运动越剧烈。

  5、分子热运动的含义:由于分子的运动跟温度有关,所以这种无规则运动叫做分子的热运动

  分子间的作用力

  6、分子间同时存在引力和斥力。分子间存在引力的例子:

  (1)两个底部削平的铅柱紧压在一起后,下面吊一个重物都不能把它们拉开

  (2)固体很难被拉伸。

  (3)用细线把很干净的玻璃板吊在弹簧测力计的下面,使玻璃板水平接触水面,然后稍稍用力向上拉玻璃板,弹簧测力计的读数会变大

  分子间存在斥力的例子:固体和液体很难被压缩

  7、分子间的引力和斥力都随分子间距离的改变而改变

  (1)当分子间距离过小,引力小于斥力,表现为斥力

  (2)当分子间距离过大,引力大于斥力,表现为引力

  (3)当分子间相距很远,分子间作用力很微弱,可忽略。(如气体分子;破镜难重圆)

  8、固、液、气三态物质的宏观特性和微观特性

  9、分子间的引力和斥力都随分子间距离的改变而改变

  (1)当分子间距离过小,引力小于斥力,表现为斥力

  (2)当分子间距离过大,引力大于斥力,表现为引力

  (3)当分子间相距很远,分子间作用力很微弱,可忽略。(如气体分子;破镜难重圆)

  10、固、液、气三态物质的宏观特性和微观特性

  内能

  注意:内能是一种与热运动有关的能量,任何一个物体在任何情况下都具有内能。一、影响物体内能大小的因素

  1、温度:在物体的质量、材料、状态相同时,温度越高,内能越大。(如:如同一铁块,温度越高,内能越大)

  2、质量:在物体的温度、材料、状态相同时,质量越大,内能越大。(如:温度相同的一大桶水的内能比一小杯水的内能大)

  3、材料:在物体的温度、质量、状态相同时,材料不同,内能可能不同。

  4、状态:在物体的温度、材料、质量相同时,状态不同,内能也可能不同。

  (如零度的水放热后凝固成零度的冰,内能减小)

  注意:内能是指物体的内能,而不是分子的。内能具有不可测量性。

  改变内能的二种方式:热传递和做功(对改变内能来说,这二种方式是等效的。)

  1、热传递

  (1)、通过热传递改变物体内能的例子:太阳能热水器;炉子烧水;铁块在火中加热到发红、一盆热水放在室内,一会儿就凉了;用热水袋取暖;冬天,对手呵气。

  (2)热传递的条件:物体之间有温度差。

  (3)热传递方向:内能从高温物体向低温物体传递,或从同一物体的高温部分向低温部分传递

  (4)热传递的实质:内能在物体间的转移(吸收热量,内能增加;放出热量,内能减少。)

  (5)热量:物体在热传递过程中转移能量的多少叫做热量。(热量的国际单位是焦耳)注意:热量是一个过程量,它对应于热传递的过程。不能说:一个物体含有或具有多少热量。只能说:一个物体吸收了多少热量或放出了多少热量

  2、做功

  (1)通过热传递改变物体内能的例子:古时钻木取火;天冷了,搓搓手,手变暖和;溜滑梯_好烫;_和飞轮摩擦出火花;陨石进入地球,与大气层摩擦升温燃烧变流星;锯条锯木变热;用铁锤反复敲打铁块,铁块会升温;用锤子敲打_,_变热;用打气筒给自行车打气,过一会,气筒壁发热;压缩气体,气体内能增大;气体膨胀,气体内能减小;开啤酒瓶时,里面的气体把瓶塞顶出,瓶口温度降低;烧开水时,锅内水蒸气顶起锅盖。

  (2)做功的实质:内能和其他能的转化(对物体做功,内能增加;物体对外做功,内能减少)

  (3)关于气体做功的两个代表实验;

  A、一个配有活塞的厚玻璃管中放一小团蘸了_的棉花,在快速向下压活塞的过程中。现象:棉花会着火。原因:活塞压缩空气做功空气的内能增大温度升高达到_的燃点棉花燃烧

  B、大口玻璃瓶内有一些水,水的上方有水蒸气,给瓶内打气,当瓶塞跳起时现象:当瓶塞跳起时,瓶内出现白雾。原因:空气推动瓶塞对瓶塞做功瓶内空气内能减小瓶内温度降低瓶内空气中的水蒸气遇冷液化成小水珠

  比热容

  一、探究物质的吸、放热性能实验

  1、提出问题:物体吸收热量的多少与哪些因素有关?

  2、猜想假设:与物质种类、物体质量、温度升高多少有关。

  3、探究物体吸收热量多少与物质种类是否有关。

  原理:

  (1)器材:水、食用油、相同的电加热器(或酒精灯)、温度计、秒表,相同的两个玻璃杯、铁架台等

  (2)实验方法:(控制变量法)

  方案一:取等质量的水和食用油,加热相同的时间(吸收相等的热量)后,比较温度的升高量(即保持m、Q吸相同,通过比较(tt0)来比较c,(tt0)大的c小)

  方案二:取等质量的水和煤油,使其升高相同的温度,比较加热的时间(吸收热量的多少)。(即保持m、(tt0)相同,通过比较Q吸来比较c,Q吸大的c大)

  (3)实验过程

  (4)实验现象:

  a、质量相等的水和食用油,加热时间相同(吸收相等的热量)时,水比食用油温度升高的少、变化的慢。(即m、Q吸相同时,水的(tt0)小,水的c大)

  b、质量相等的水和食用油,升高相同的温度时,水加热的时间比食用油长(即水吸收的热量比食用油多)。(即m、(tt0)相同时,水Q吸的大,水的c大)

  【电学部分】

  1、电流强度:I=Q电量/t

  2、电阻:R=ρL/S

  3、欧姆定律:I=U/R

  4、焦耳定律:

  (1)、Q=I2Rt普适公式)

  (2)、Q=UIt=Pt=UQ电量=U2t/R(纯电阻公式)

  5、串联电路:

  (1)、I=I1=I2

  (2)、U=U1+U2

  (3)、R=R1+R2

  (4)、U1/U2=R1/R2(分压公式)

  (5)、P1/P2=R1/R2

  6、并联电路:

  (1)、I=I1+I2

  (2)、U=U1=U2

  (3)、1/R=1/R1+1/R2[R=R1R2/(R1+R2)]

  (4)、I1/I2=R2/R1(分流公式)

  (5)、P1/P2=R2/R1

  7定值电阻:

  (1)、I1/I2=U1/U2

  (2)、P1/P2=I12/I22

  (3)、P1/P2=U12/U22

  8、电功:

  (1)、W=UIt=Pt=UQ(普适公式)

  (2)、W=I2Rt=U2t/R(纯电阻公式)

  9、电功率:

  (1)、P=W/t=UI(普适公式)

  (2)、P=I2R=U2/R(纯电阻公式)

  初中物理学习方法有哪些

  1重视定义和公式

  初中生要想学好物理一定要重视定义和公式。在学习物理时,我们经常用到的有很多公式,有些公式表面没有什么联系,但是内在是有一些联系的,如果我们经常进行公式的推导,找出这些公式的内在联系,那么我们在做题时就会非常的顺手。

  2重视知识点之间的联系

  初中生学好物理的方法之一就是重视知识点之间的联系,相比其他学科,物理各个知识间的联系性更强,考试卷子试题非常综合,即在同一道题中会考察到多个考点。比如,很多学生在学习电功率这部分内容时总觉得很难,这是因为电功率的很多问题,需要与欧姆定律结合起来使用,还需要把不同的电路状态分析清楚,也就是说电路到底是串联还是并联,因此要重视物理知识点之间的联系。

  3学会总结和积累

  要想学好物理一定要学会总结和积累。物理是一门积累的科目,要善于从错误中吸取经验。也要积累平时做题的经验,一层一层地积累之后,相信物理对你而言并不难。其实物理有许多解题的技巧,一般的辅导书上都会有,你也可以自己找出技巧,掌握了这些方法你将更进一步。

  4重视画图和识图

  学习物理离不开图形,从运用力学知识的机械设计到运用电磁学知识的复杂电路设计,都是主要依靠“图形语言”来表述的。知识的条理化,分析解决问题的思路等问题,用通常意义上的语言或文字表达都是有局限性和低效率的。所以,按照科学的方法动手画图是学习物理的重要方法,所以初中生要想学好物理,一定要会画图和识图。

  物理距离是什么意思

  严格来说,距离指同一时间下,空间两点之间的空间最短连线长。该最短连线的性质取决于距离所在的空间性质,在经典物理中的平直空间里是直线,但在弯曲空间里则可以是曲线。

物理知识点总结5

  自由落体

  1.初速度Vo=0

  2.末速度Vt=gt

  3.下落高度h=gt^2/2(从Vo位置向下计算)4.推论Vt^2=2gh

  注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。

  (2)a=g=9.8m/s^2≈10m/s^2重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。

  3)竖直上抛

  1.位移S=Vot-gt^2/22.末速度Vt=Vo-gt(g=9.8≈10m/s2)

  3.有用推论Vt^2–Vo^2=-2gS4.上升高度Hm=Vo^2/2g(抛出点算起)

  5.往返时间t=2Vo/g(从抛出落回原位置的时间)

  注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。

物理知识点总结6

  一、高考总复习的侧重点及时间安排

  从今年九月到次年六月高考,一共是九个月的复习时间,除去学校安排的期中、期末及模拟考试,总复习时间约为36周,我们一般将物理高考复习分为三轮,安排如下:

  1.第一轮复习:打好基础,以全面复习知识点为主,构建中学物理的知识网络。高中物理知识大致可分60个考点,平均每周复习3个考点,约需20周。实验复习可以根据实际情况灵活安排,既可以在一轮复习的最后安排(这样便于在实验室集中完成一次实验),也可以在每章复习之后将本章的实验一起进行复习。

  2.第二轮复习:以专题复习为主,侧重在解题方法和解题技巧上下功夫,突出知识的横向联系,知识的延伸和拓展,提高解决物理问题的能力。大致可分16个专题。平均每周复习4个专题,约需4周。这一轮复习的专题也可以根据自己的实际情况来安排。

  3.第三轮复习:以模拟训练为主,针对前面的复习查缺补漏,强调解题的规范性。以模拟试题为主,建议做一些各地的模拟试题,这些考过的试题,往往是各地骨干教师经过认真研究、充分考虑而命制的,无论在题型、题量及难易程度上均较贴近高考。

  二、高考总复习的目标和复习方法

  (一)第一轮复习要全方位多角度地扫描知识点,掌握物理问题的基本分析方法

  1.全面系统地进行学科基础知识的复习

  一般按课本的章节顺序进行复习,同时配备一本第一轮复习的参考书。在课堂上老师一般很难详细述及所有内容,主要是理出要点,突出重点,解决疑难,总结提高,并辅以典型例题,因此除了上课认真听讲外,自己还要认真阅读课本章节内容,包括阅读材料,并熟记公式,以免形成知识的缺漏,要努力拓宽知识广度。

  2.对每章的知识构建知识网络

  网络化的知识结构具有知识存贮准确、提取迁移快速等特点,在解决具体问题时,只要触及一点,就能通过联想,迅速形成一个相关的知识群,有利于问题的解决。复习时要抓住知识间的联系,结合《考试大纲》中的“知识内容表”,把相关的知识编成一定的结构体系。例如第一章“力”这部分,可总结出知识网络如下:

  3.掌握解决物理问题的基本分析方法

  基本分析方法是解决高考物理试题的主要方法,通过第一轮的复习,要熟练掌握各种解决物理问题的基本分析方法,纵观20_年全国各地的高考试题,可以看出试题中所用到的各种基本分析方法不外乎以下10种:①受力分析方法;②运动分析方法;③过程分析方法;④状态分析方法;⑤动量分析方法;⑥能量分析方法;⑦电路分析方法;⑧光路分析方法;⑨图象分析方法;⑩数据处理方法。

  4.独立完成配套试卷,检查自己对所涉及的概念及规律的理解程度

  本轮复习要尽可能多看一些习题,对不同类型的习题,要认真解答,做到对解决物理问题有明确的思路,并能得到正确的答案,但由于时间较紧,所以对解题的规范性不作很高的要求。另外每一章复习结束后,要做一次全章训练题。对于本轮复习中做错的或理解不够透彻的题,可以用红笔圈出来,以便在第三轮复习中再看一遍。

  (二)第二轮复习重在抓住知识的横向联系和解题能力的提高

  1.采用归类、对比的方法进行专题复习,加深对双基知识的理解

  例如在“图象法在解题中的应用”这一专题中,可以将原来散见于力学、热学、电学、光学等章节的图象,如v-t图、p-V图、U-I图、Ek-v图进行对比分析,可将这些支离破碎的知识点综合起来,从图线的纵轴、横轴的含义,截距,斜率,曲直,所围面积等诸多方面全方位认识图线的物理意义,这样对专题的认识和应用能力会有大幅度提高。

  2.逐步形成力、热、电、光、原子板块的知识网络,提高学科内综合的能力

  在物理学科内,力、热、电、光、原子各板块是有联系的,通过专题复习,要能够理清思路,找出其联系所在。主要有两条主线将它们联系起来,一是“力”这条主线,除了力学部分的重力、弹力、摩擦力之外,还有热学部分的分子力、电学部分的电场力、磁场力(安培力或洛仑兹力),原子物理中还有核力。另一个是“能”这条主线,除了力学中的动能、重力势能、弹性势能外,还有热学中的分子势能、电学中的电势能等等,注意对物理中“能的转化和守恒定律”的理解与应用。

  3.领会各种解题方法和技巧

  除了基本分析方法外,还有其他一些更巧、更简捷的思维方法,如:解静力学、动力学问题常用的隔离法、整体法;处理复杂运动常用的运动分解法;处理其他问题的图线法、等效代换法等等。掌握这样一些方法,可以使自己举一反三,灵活解决各种问题。

  4.通过专题复习使掌握的知识得以延伸和拓展

  以实验复习为例,虽然近几年的高考实验通常不是课本上的原有实验,但也往往是建立在课本实验的基础上的,所以平时复习要注重将基础实验进行拓展。在理解原理的基础上去把握实验的实施方案(如实验所需测量的物理量、实验仪器、实验步骤),并能够根据自己所学的有关理论对实验进行必要的改进、改编。同时要重视课本上的课后小实验,通过对课本小实验设计的具体操作,培养自己将所学的知识创造性地迁移到新的实验情景中去的能力。例如在专题“物理实验的设计与创新”中研究用单摆测重力加速度的实验,我们测的是周期T和摆长l,再由公式g=来计算,书本上采用的.是多测几组再求平均值法,而高考曾考过的方法是:以l和T2/4л2为坐标轴,用测得的数据描点画出直线,求直线的斜率即是g。通过这个实验我们还可以延伸出这样的问题:

  ①我们可以想出哪几种测量重力加速度的方法?

  ②若实验中缺少螺旋测微器而无法测出单摆球的直径,如何测出当地的重力加速度的值?

  ③若实验中缺少小铁球,用一个砝码(或钩码)来代替小球,如何测出重力加速度的值?

  ④某单摆的摆球是一个极不规则的重物,且由于悬点(在天花板上)很高而无法测量其摆长,你能否在仅有一只秒表和一根米尺的条件下,用一个简便易行的方法测量出当地的重力加速度g?

  ⑤利用单摆这一套实验装置,给你一块磁铁、一块铁板、秒表、刻度尺、木架、细线、弹簧秤等,你如何测出当磁铁与铁板相距1cm时相互作用的磁力?能适应这样一种拓宽,也就不怕试题的千变万化了。

  (三)第三轮复习侧重思维的周密性和解题的规范性

  1.精选模拟试题,避免题海战术

  解题是复习巩固的必要手段,也是提高知识迁移、知识应用能力的有效方法。但由于时间有限,第三轮复习时不可能、也没必要对教材上的知识点面面俱到,不能采取见题就做的方式而浪费大量的时间。每周可做3~4份模拟试题,把重点放在综合性强及涉及新知识、新事物、新发现等问题方面,通过这些试题去发现本身知识、能力的漏洞和缺陷。对发现的问题应及时寻求症结所在,并查缺补漏,另外新题一般是在已有模型中变换得来的,所以要培养联想与变通的本领,不妨这样思考一下:①本题是否有其他的求解途径,即一题多解;②和其他的题是否有相似之处,即多题一解;③本题还可以做哪些变化,即一题多变。

  2.培养思维的周密性

  第三轮复习的目标是考试得分,考生要有强烈的“分数意识”!有些考生,题会做却拿不到分,可能是思维的周密性还有欠缺,例如20_年江苏高考试题的第16题:“系统处于平衡状态时,两个小圆环分别在哪些位置?”题目本身并不难,但出现了四解,如果平时不是训练有素,考生很难答全。

  3.训练解题的规范性

  考试得分不高的另一个原因在于解题不规范,第三轮复习中一定要注意训练,在这一阶段,对于很多考生来说,“如何做对”比“如何会做”可能更重要,训练时对解答题要注意以下几个问题:

  (1)解答题中要有必要的文字说明。即对非题设字母符号要加以说明;对物理关系的判断要加以说明,如两个物体分离时弹力N=0,或分离时加速度a、速度v仍然相同;对方程的研究对象、研究过程要加以说明;作出某项判断的依据要加以说明,如根据动量守恒定律,根据牛顿第二定律等等;对结果中的矢量要说明“+、-”号的意义。

  (2)要有主要的解题步骤。一般分三步:原始方程,代入量,结果(如果是矢量应交待大小和方向)和结果的讨论(如一元二次方程的两个解要讨论取舍)。其他次要的步骤可以省略,如:解方程的具体步骤;几何关系只要求会正确判断(如三角形相似),不要求证明。

  (3)书写要讲究规范。如每一个小题号要分开;具体数字相乘应该用符号“×”,不能用点“?”;方程两端同样的字母不能在方程中约去,如qE=qvB;如无特殊要求,最后结果一般取2~3位数字就可以了;以字母表示最后结果的不要把具体数字写进去,如,不能写成,等等。

物理知识点总结7

  S总S1S2S1、速度公式:V求平均速度:V平均t总t1t2t回声测距:S1Vt28

  记住的物理量:声在15℃空气中的速度:V=340m/s光速:C=3×10m/s2、串联电路的特点:

  电流规律:I总I1I2电压规律:U总U1U2电阻:R总R1R2电功率:P1P2总U总IP总P3、并联电路的特点:

  电流规律:I总I1I2电压规律:U总U1U2电阻:R总电功率:P1P2总UI总P总P4、欧姆定律:IR1R2

  R1R2URWU2UII2R5、电功率:PtRU26、电功、消耗的电能:WPtUIttI2Rt

  R7、已知额定电压和额定功率时:求电阻:R2U额P额求正常工作时的电流:I额P额U额

  求实际功率:P实U实R2(U实U额2)P额

  8、波速、波长与频率的关系:cf

  m总m1m2m9、密度:求混合物的密度:

  v总v1v2v水的密度:水1g/cm110kg/m3酒精密度:酒0.8g/cm0.810kg/m3

  333

  河实物理复习资料--邝贵雄

  10、重力:Gmgg9.8N/kg11、杠杆平衡:F1L1F2L2

  12、对于固体,先求压力:FG总G1G2再求压强:P对于液体,先求压强:Pgh再求压力:FPS13、浮力:

  称重法求浮力:F浮G-F示

  阿基米德原理:F浮G排m排g液gv排漂浮、悬浮:F浮G物

  受力分析:F浮G物-F上拉或F浮G物F下拉14、斜面:

  有用功:W有用Gh总功:W总FS机械效率:15、滑轮组:

  对于省n倍力的滑轮组有S拉nS物V拉nV物在不考虑绳重和绳与滑轮的`摩擦时求拉力F拉求动滑轮重力:G动nF拉-G物16、竖直方向的滑轮组:

  有用功:W有用Gh总功:W总FS机械效率:FSW有用GhW总FsG物G动nW有用GhGW总FSnF拉力的功率:PW总FV拉tW有用fSf物W总FS拉nF17、水平方向的滑轮组:

  有用功:W有用fS物总功:W总FS拉机械效率:18、热量:

  热传递:Qcmt燃料燃烧:Qmq或QVq焦耳定律:QIRt

物理知识点总结8

  冬夜,室内的水蒸气常在窗玻璃上凝华成冰晶,树枝上的“雾凇”等现象都是凝华的现实表达。

  凝华:物质从气态不经过液态而直接变成固态的现象。是物质在温度和气压低于三相点的时候发生的一种物态变化。

  形成凝华的原因

  形成凝华的条件比较特殊,一般是要求气体的浓度要到达一定的要求,温度要低于三相点的温度,比方低于0摄氏度的时候的水蒸气等,形成原因一般是急剧降温或者由于升华现象造成。

  生活中的'凝华现象

  从冰箱里拿出来的冰棍结成了一层“霜”: 又如自然界中“霜”的形成。

  升华和凝华互为逆过程

  使已有碘蒸气的烧瓶降温散热,碘蒸气将直接凝华成固态碘 在烧瓶中放少量固态的碘,并且对烧瓶微微加热,固态的碘没有熔化成液态的碘,而是直接变成了碘蒸气。停顿加热后,碘蒸气并不液化,而是直接附着在烧瓶上形成固态的碘。前者是升华现象,后者是凝华现象。

  碘加热后,会变成碘蒸气

  生活中的凝华现象除了上述讲到的,还有用久的电灯泡会从透明变成黑色,这也是凝华的原理。

物理知识点总结9

  一、力学

  1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);

  2、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。

  同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。

  3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。

  4、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。

  5、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。

  6、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。

  7、17世纪,德国天文学家开普勒提出开普勒三大定律;

  8、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;

  9、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。10、我国宋朝发明的火箭是现代火箭的`鼻祖,与现代火箭原理相同;

  俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。

  11、1957年10月,苏联发射第一颗人造地球卫星;

  1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。

  二、电磁学

  12、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律库仑定律,并测出了静电力常量k的值。

  13、16世纪末,英国人吉伯第一个研究了摩擦是物体带电的现象。18世纪中叶,美国人富兰克林提出了正、负电荷的概念。

  1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。

  14、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。

  15、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。16、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。

  17、1911年,荷兰科学家昂纳斯发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象超导现象。

  18、19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳定律。19、1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。

  20、法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向。

  21、荷兰物理学家洛伦兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛伦兹力)的观点。

  22、汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。23、1932年,美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子。(最大动能仅取决于磁场和D形盒直径,带电粒子圆周运动周期与高频电源的周期相同)24、1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律电磁感应定律。

  25、1834年,俄国物理学家楞次发表确定感应电流方向的定律楞次定律。

  26、1835年,美国科学家亨利发现自感现象(因电流变化而在电路本身引起感应电动势的现象),日光灯的工作原理即为其应用之一。

  三、热学

  27、1827年,英国植物学家布朗发现悬浮在水中的花粉微粒不停地做无规则运动的现象布朗运动。

  28、1850年,克劳修斯提出热力学第二定律的定性表述:不可能把热从低温物体传到高温物体而不产生其他影响,称为克劳修斯表述。次年开尔文提出另一种表述:不可能从单一热源取热,使之完全变为有用的功而不产生其他影响,称为开尔文表述。29、1848年开尔文提出热力学温标,指出绝对零度是温度的下限。

  30、19世纪中叶,由德国医生迈尔、英国物理学家焦尔、德国学者亥姆霍兹最后确定能量守恒定律。

  21、1642年,科学家托里拆利提出大气会产生压强,并测定了大气压强的值。四年后,帕斯卡的研究表明,大气压随高度增加而减小。

  1654年,为了证实大气压的存在,德国的马德堡市做了一个轰动一时的实验马德堡半球实验。

  四、波动学

  22、17世纪,荷兰物理学家惠更斯确定了单摆周期公式。周期是2s的单摆叫秒摆。23、1690年,荷兰物理学家惠更斯提出了机械波的波动现象规律惠更斯原理。24、奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象多普勒效应。

  五、光学

  25、1621年,荷兰数学家斯涅耳找到了入射角与折射角之间的规律折射定律。26、1801年,英国物理学家托马斯?杨成功地观察到了光的干涉现象。

  27、1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射泊松亮斑。28、1864年,英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场理论,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。

  29、1887年,德国物理学家赫兹用实验证实了电磁波的存在,并测定了电磁波的传播速度等于光速。30、1894年,意大利马可尼和俄国波波夫分别发明了无线电报,揭开无线电通信的新篇章。

  31、1800年,英国物理学家赫歇耳发现红外线;1801年,德国物理学家里特发现紫外线;

  1895年,德国物理学家伦琴发现X射线(伦琴射线),并为他夫人的手拍下世界上第一张X射线的人体照片。

  32、激光被誉为20世纪的“世纪之光”。

  六、波粒二象性

  33、1900年,德国物理学家普朗克为解释物体热辐射规律提出能量子假说:物质发射或吸收能量时,能量不是连续的(电磁波的发射和吸收不是连续的),而是一份一份的,每一份就是一个最小的能量单位,即能量子E=hν,把物理学带进了量子世界;

  受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律,因此获得诺贝尔物理奖。

  34、1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时康普顿效应,证实了光的粒子性。

  35、1913年,丹麦物理学家玻尔提出了自己的原子结构假说,最先得出氢原子能级表达式,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。

  36、1885年,瑞士的中学数学教师巴耳末总结了氢原子光谱的波长规律巴耳末系。37、1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;1927年美、英两国物理学家得到了电子束在金属晶体上的衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高。

  七、相对论

  38、物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验相对论(高速运动世界),②热辐射实验量子论(微观世界);

  39、19世纪和20世纪之交,物理学的三大发现:X射线的发现,电子的发现,放射性的发现。

  40、1905年,爱因斯坦提出了狭义相对论,有两条基本原理:

  ①相对性原理不同的惯性参考系中,一切物理规律都是相同的;

  ②光速不变原理不同的惯性参考系中,光在真空中的速度一定是c不变。狭义相对论的其他结论:

  ①时间和空间的相对性长度收缩和动钟变慢(或时间膨胀)

  ②相对论速度叠加:光速不变,与光源速度无关;一切运动物体的速度不能超过光速,即光速是物质运动速度的极限。

  ③相对论质量:物体运动时的质量大于静止时的质量。

  41、爱因斯坦还提出了相对论中的一个重要结论质能方程式:E=mc2。

  八、原子物理学

  42、1858年,德国科学家普吕克尔发现了一种奇妙的射线阴极射线(高速运动的电子流)。43、1897年,汤姆生利用阴极射线管发现了电子,指出阴极射线是高速运动的电子流。说明原子可分,有复杂内部结构,并提出原子的枣糕模型。1906年,获得诺贝尔物理学奖。44、1909-1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10-15m。

  45、1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核有复杂的内部结构。天然放射现象:有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变快慢与原子所处的物理和化学状态无关。46、1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,发现了质子,并预言原子核内还有另一种粒子中子。47、1932年,卢瑟福学生查德威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖。48、1934年,约里奥-居里夫妇用α粒子轰击铝箔时,发现了正电子和人工放射性同位素。

  49、1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素钋(Po)镭(Ra)。

  50、1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。

  51、1942年,在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、水泥防护层等组成)。

  52、1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。人工控制核聚变的一个可能途径是:利用强激光产生的高压照射小颗粒核燃料。

  53、粒子分三大类:媒介子-传递各种相互作用的粒子,如:光子;轻子-不参与强相互作用的粒子,如:电子、中微子;

  强子-参与强相互作用的粒子,如:重子(质子、中子、超子)和介子。

物理知识点总结10

  标量和矢量:

  (1)将物理量区分为矢量和标量体现了用分类方法研究物理问题。

  (2)矢量和标量的根本区别在于它们遵从不同的运算法则:标量用代数法;矢量用平行四边形定则或三角形定则。

  (3)同一直线上矢量的合成可转为代数法,即规定某一方向为正方向,与正方向相同的物理量用正号代人,相反的用负号代人,然后求代数和,最后结果的正、负体现了方向,但有些物理量虽也有正负之分,运算法则也一样,但不能认为是矢量,最后结果的'正负也不表示方向,如:功、重力势能、电势能、电势等。

  共点力

  几个力如果都作用在物体的同一点上,或者它们的作用线相交于同一点,这几个力叫共点力。

  力的合成方法

  求几个已知力的合力叫做力的合成。

  平行四边形定则:

  两个互成角度的力的合力,可以用表示这两个力的有向线段为邻边,作平行四边形,它的对角线就表示合力的大小及方向,这是矢量合成的普遍法则。

物理知识点总结11

  电功率知识点一:电能

  1、电灯泡把电能转变为光能,电动机把电能转变为动能,电热器把电能转变为热(内能)。电能可能同其它形式的能量转化而来,也可以转化为其它形式的能量。

  发电厂把其他形式的能转化为电能,用电器把电能转化为其他形式的能。

  2、电能的计量

  (1)电能用W表示,常用单位是千瓦时(KWh),在物理学中能量的通用单位是焦耳(J),简称焦。1KWh = 3.6 x106J。

  (2)电能表是测量一段时间内消耗的电能多少的仪器。

  A、220V是指这个电能表应该在220V的电路中使用;

  B、10(20)A指这个电能表的额定电流为10安,在短时间内最大电流不超过20安;

  C、50Hz指这个电能表在50赫兹的交流电路中使用;

  D、600revs/KWh指这个电能表的每消耗一千瓦时的电能,转盘转过600转

  电功率知识点二:电功率

  1、电功率是表示消耗电能的快慢的物理量,用P表示,单位是瓦特,简称瓦,符号是W。常用单位有千瓦(KW)。1KW = 103W

  2、电功率的定义也可以理解为:用电器在1秒内消耗的电能。

  公式:P = W/t 推导:W = P t t = W /P

  在使用时,单位要统一,单位有两种可用:

  (1)、电功率用瓦(W),电能用焦耳(J),时间用秒(S);

  (2)、电功率用千瓦(KW),电能用千瓦时(KWh,度),时间用小时(h)

  3、1千瓦时是功率为1KW的用电器使用1h所消耗的电能。

  4、额定功率:用电器在额定电压下工作时的电功率(或者说用电器正常工作时的电功率),叫做额定功率。额定功率对应的是额定电压和额定电流;实际功率对应的是实际电压和实际电流;一个用电器它的额定电压(功率)是唯一的,而它的实际电压(功率)可以有无数个。

  5、电功率的测量P = UI

  电功率与电压、电流的关系公式: P = U I 单位:电功率用瓦(W),电流用安(A),电压用伏(V)。

  公式推导:

  根据 I=U/R P=UI 得:P = UI = U U/R=U2/R 即P = U2/R

  根据 U=I R P=UI 得:P = UI = IRI = I2 R 即P = I2 R

  W=Pt= UI t =I2Rt= U2/R t

  电功率知识点三:测量小灯泡的电功率

  伏安法测灯泡的额定功率:

  ①原理:P=UI

  ②电路图(与用伏安法测电阻的电路图相同)

  ③所需仪器:电流表、电压表、滑动变阻器、电池组、开关、小灯泡、导线。

  ④实验目的:测定小灯泡在三种不同电压下的电功率:

  ⑤实验结论:

  当U实.〉U额 时 P实〉P额 发光较亮

  当U实.=U额 时 P实=P额 发光正常

  当U实.

  对于同一小灯泡来说,灯泡的亮度由灯泡的实际功率决定,其实际功率随着它两端电压的变化而变化。实际电压越大,灯泡的实际功率越大;只有在额定电压下它才能正常发光,此时的实际功率等于额定功率。

  电功率知识点四:电与热

  1、电流的热效应

  电流通过导体时电能转化成热,这个现象叫做电流的热效应。

  2、焦耳定律 计算公式:Q = I2Rt (适用于所有电路)

  对于纯电阻电路 Q=W=Pt=UIt= U2t/R=I2Rt

  3、利用电热:电热水器、电饭锅、电熨斗

  防止电热:电视机的后盖有很多孔,电动机的翼状散热片

  4.电热器优点:清洁卫生没有污染、热效率高、方便控制和调节温度。

  电功率知识点五:电功率和安全用电

  1、家庭电路电流过大原因:短路、用电器总功率过大。

  2、保险丝的作用

  ①保险丝是由电阻率较大、熔点较低的铅锑合金制作的。

  ②保险丝保险原理:当电流过大时,它由于温度升高而熔断,切断电路,起到保护的'作用。

  电功率知识点六:生活用电常识

  1、家庭电路的组成

  家庭电路的组成部分:进户线(火线零线)、电能表、总开关、保险装置、插座、灯座、开关、用电器。

  家庭电路的连接:各种用电器是并联接入电路的,插座与灯座是并联的,控制各用电器工作的开关与电器是串联的。

  2、火线和零线

  用试电笔可以判断哪条是火线。

  3、三线插头和漏电保护器

  正常情况下,用电器通过火线、零线和供电系统中的电源构成闭合电路。如果站在地上的人不小心接触了火线,电流经过人体流入大地,漏电保护器就会迅速切断电流,对人身起到保护作用。

  4、两种类型的触电

  ①人体同时接触火线和零线,人体、导线和电网中的供电设备构成了闭合电路。

  ②人体同时接触火线和大地,人体、导线、大地和电网中的供电设备构成了闭合电路。

  5、触电的急救

  如果发生了触电事故,要立即切断电源。

物理知识点总结12

  一、电路

  电流的形成:电荷的定向移动形成电流。(任何电荷的定向移动都会形成电流)。

  电流的方向:从电源正极流向负极。

  电源:能提供持续电流(或电压)的装置。

  电源是把其他形式的能转化为电能。如干电池是把化学能转化为电能。发电机则由机械能转化为电能。

  有持续电流的条件:必须有电源和电路闭合。

  导体:容易导电的物体叫导体。如:金属,人体,大地,盐水溶液等。

  绝缘体:不容易导电的物体叫绝缘体。如:玻璃,陶瓷,塑料,油,纯水等。

  电路组成:由电源,导线,开关和用电器组成。

  电路有三种状态:(1)通路:接通的电路叫通路;(2)开路:断开的电路叫开路;(3)短路:直接把导线接在电源两极上的电路叫短路。

  电路图:用符号表示电路连接的图叫电路图。

  串联:把元件逐个顺序连接起来,叫串联。(任意处断开,电流都会消失)

  并联:把元件并列地连接起来,叫并联。(各个支路是互不影响的)

  二、电流

  国际单位:安培(A);常用:毫安(mA),微安( A),1安培=103毫安=106微安。

  测量电流的仪表是:电流表,它的使用规则是:

  ①电流表要串联在电路中;

  ②电流要从"+"接线柱入,从"—"接线柱出;

  ③被测电流不要超过电流表的量程;

  ④绝对不允许不经过用电器而把电流表连到电源的两极上。

  实验室中常用的电流表有两个量程:①0~0.6安,每小格表示的电流值是0.02安;

  ②0~3安,每小格表示的电流值是0.1安。

  三、电压

  电压(U):电压是使电路中形成电流的原因,电源是提供电压的装置。

  国际单位:伏特(V);常用:千伏(KV),毫伏(mV)。1千伏=103伏=106毫伏。

  测量电压的仪表是:电压表,使用规则:

  ①电压表要并联在电路中;

  ②电流要从"+"接线柱入,从"—"接线柱出;

  ③被测电压不要超过电压表的量程;

  实验室常用电压表有两个量程:①0~3伏,每小格表示的电压值是0.1伏;

  ②0~15伏,每小格表示的电压值是0.5伏。

  熟记的电压值:①1节干电池的电压1.5伏;②1节铅蓄电池电压是2伏;③家庭照明电压为220伏;④安全电压是:不高于36伏;⑤工业电压380伏。

  四、电阻

  电阻(R):表示导体对电流的阻碍作用

  。(导体如果对电流的阻碍作用越大,那么电阻就越大,而通过导体的电流就越小)。

  国际单位:欧姆(Ω);常用:兆欧(MΩ),千欧(KΩ);1兆欧=103千欧; 1千欧=103欧。

  决定电阻大小的因素:材料,长度,横截面积和温度(R与它的U和I无关)。

  滑动变阻器:

  原理:改变电阻线在电路中的长度来改变电阻的

  作用:通过改变接入电路中的电阻来改变电路中的电流和电压。

  铭牌:如一个滑动变阻器标有"50Ω2A"表示的意义是:阻值是50Ω,允许通过的电流是2A。

  正确使用:a,应串联在电路中使用;b,接线要"一上一下";c,通电前应把阻值调至的地方。

  怎样夯实物理学科基础?

  首先是翻课本,把公式都列在一张纸上。但在在摘录之前,肯定是要理解那个公式的,比如各个符号代表的意思,通常使用的单位,还有整个公式表示的意思。只有理解了这个公式,才能把它用起来。

  列完公式之后,当然就是要把它记下来,背诵下来。但其实当你理解的时候,就已经把公式背下来了。接下来就是要好好锻炼这些基础公式运用的熟练程度。基础不好的同学,有可能是没有把握好一轮复习这个时机去掌握基础。那么一轮复习的时候,那些一轮资料,也有可能是没有好好完成的。可能错了好多没有去理解它,或者都没做。

  公式列出来,理解之后,就可以去找一些基础的题目来练习一下熟练度,特别是,一轮的复习资料,可以把它找出来,然后重新用一下。可以根据现在对公式的理解,然后去改正以前的那些错题,或者是再写一下自己之前没有做的那些题目,来提升自己对公式运用的熟练度。

  在自己感觉自己对公式的熟练度差不多的时候,可以试着去做一些大题,这是需要同学们,去综合运用各个公式的.题目。这样子去理解各公式之间的关联。不过,到这种程度的话,就已经达到中上层的水平了!

  流程大致是:理解公式→摘录公式→记忆公式→做基础题训练熟练度→做大题锻炼综合能力。

  学好物理有哪七小步

  一、自学多质疑

  按照老师下发的单元教学计划,在指定的时间内进行自学,将自学中的疑难问题写在质疑小本上交给老师。初期为了帮助学生质疑,在课堂上专门安排提问题竞赛,促进思考。

  二、要独立做题

  要独立地(指不依赖他人),保质保量地做一些题。题目要有一定的数量,不能太少,更要有一定的质量,就是说要有一定的难度。任何人学习数理化不经过这一关是学不好的。独立解题,可能有时慢一些,有时要走弯路,有时甚至解不出来,但这些都是正常的,是任何一个初学者走向成功的必由之路。

  三、弄清物理过程

  要对物理过程一清二楚,物理过程弄不清必然存在解题的隐患。题目不论难易都要尽量画图,有的画草图就可以了,有的要画精确图,要动用圆规、三角板、量角器,以显示几何关系。画图能够变抽象思维为形象思维,更精确地掌握物理过程。有了图就能作状态分析和动态分析,状态分析是固定的、死的、间断的,而动态分析是活的、连续的。

  四、必备纠错本

  上课以听讲为主,还要有一个笔记本,有些东西要记下来高中生物。知识结构、的解题方法、的例题、不太懂的地方等等都要记下来。课后还要整理笔记,一方面是为了“消化好”,另一方面还要对笔记作好补充。笔记本不只是记上课老师讲的,还要作一些读书摘记,自己在作业中发现的好题、好的解法也要记在笔记本上,就是同学们常说的“好题本”。辛辛苦苦建立起来的笔记本要进行编号,以后要经学看,要能做到爱不释手,终生保存。

  五、保存好学习资料

  学习资料要保存好,既要作好分类工作,还要好记号。学习资料的分类包括练习题、试卷、实验报告等等。所谓作记号,比方说对习题而言,一般题不作记号,好题、有价值的题、易错的题,分别作不同的记号,以备今后阅读,作记号可以节省不少时间。

  六、练习做题

  针对分析解答各部分习题的关键,精选例题,用小组竞赛的方法,进行分析解决问题的思路方法和技巧的训练。

  七、懂得自我评价

  掌握自我评价的方法,善于在自己生活的集体中找到评价的参照物。如回答下面问题:①非智力因素(学习态度、兴趣、意志力、心理承受力、心理调节能力)如何?②知识掌握程度(了解、理解、还是掌握?自己属于哪一层?有何障碍?)如何?③能力(观察、思维动手能力)如何?

  快速提高物理成绩的“三多原则”

  多理解,就是紧紧抓住预习、听课和复习,对所学知识进行多层次、多角度地理解。预习可分为粗读和精读。先粗略看一下所要学的内容,对重要的部分以小标题的方式加以圈注。接着便仔细阅读圈注部分,进行深入理解,即精读。上课时可有目的地听老师讲解难点,解答疑问。这样便对知识理解得较全面、透彻。课后进行复习,除了对公式定理进行理解记忆,还要深入理解老师的讲课思路,理解解题的“中心思路”,即抓住例题的知识点对症下药,应用什么定理的公式,使其条理化、程序化。

  多练习,既指巩固知识的练习,也指心理素质的“练习”。巩固知识的练习不光是指要认真完成课内习题,还要完成一定量的课外练习。但单纯的“题海战术”是不可取的,应该有选择地做一些有代表性的题型。基础好的同学还应该做一些综合题和应用题。另外,平日应注意调整自己的心态,培养沉着、自信的心理素质。

  多总结,首先要对课堂知识进行详细分类和整理。特别是定理,要深入理解它的内涵、外延、推导、应用范围等,总结出各种知识点之间的联系,在头脑中形成知识网络。其次要对多种题型的解答方法进行分析和概括。还有一种总结也很重要,就是在平时的练习和考试之后分析自己的错误、弱项,以便日后克服。

  物理选择题答题技巧简介

  (1)审题干:在审题干时要注意以下三点:首先,明确选择的方向,即题干要求是正向选择还是逆向选择。正向选择一般用“什么是”、“包括什么”、“产生以上现象的原因”、“这表明”等表示;逆向选择一般用“错误的是”、“不正确"、“不是"等表示。其次,明确题干的要求,即找出关键词句?――题眼。 再次,明确题干规定的限制条件,即通过分析题干的限制条件,明确选项设定的具体范围、层次、角度和侧面。

  (2)审选项:对所有备选选项进行认真分析和判断,运用解答选择题的方法和技巧(下文将有论述),将有科学性错误、表述错误或计算结果错误的选项排除。

  (3)审题干和选项的关系,这是做好不定项选择题的一个重要方面。常见的不定项选择题中题干和选项的关系有以下几种情形:

  第一、选项本身正确,但与题干没有关系,这种情况下该选项不选。

  第二、选项本身正确,且与题干有关系,但选项与题干之间是并列关系,或选项包含题干,或题干与选项的因果关系颠倒,这种情况下的选项不选。

  第三、选项并不是教材的原文,但意思与教材中的知识点相同或近似,或是题干所含知识的深层次表达和解释,或是对某一正确选项的进一步解释和说明,这种情况下的选项可选。

  第四、单个选项只是教材中知识的一部分,不完整,但几个选项组在一起即表达了一个完整的知识点,这种情况下的选项一般可选。

物理知识点总结13

  (1)滑动摩擦力:一个物体在另一个物体表面上相当于另一个物体滑动的时候,要受到另一个物体阻碍它相对滑动的力,这种力叫做滑动摩擦力。

  说明:①摩擦力的产生是由于物体表面不光滑造成的。

  ②摩擦力具有相互性。

  ⅰ滑动摩擦力的产生条件:

  A、两个物体相互接触;

  B、两物体发生形变;

  C、两物体发生了相对滑动;

  D、接触面不光滑。

  ⅱ滑动摩擦力的方向:总跟接触面相切,并跟物体的相对运动方向相反。

  说明:

  ①“与相对运动方向相反”不能等同于“与运动方向相反”

  ②滑动摩擦力可能起动力作用,也可能起阻力作用。

  ⅲ滑动摩擦力的大小:F=μFN

  说明:①FN两物体表面间的压力,性质上属于弹力,不是重力。应具体分析。

  ②μ与接触面的材料、接触面的粗糙程度有关,无单位。

  ③滑动摩擦力大小,与相对运动的速度大小无关。

  ⅳ效果:总是阻碍物体间的相对运动,但并不总是阻碍物体的运动。

  ⅴ滚动摩擦:一个物体在另一个物体上滚动时产生的.摩擦,滚动摩擦比滑动摩擦要小得多。

  (2)静摩擦力:两相对静止的相接触的物体间,由于存在相对运动的趋势而产生的摩擦力。

  说明:静摩擦力的作用具有相互性。

  ⅰ静摩擦力的产生条件:

  A、两物体相接触;

  B、相接触面不光滑;

  C、两物体有形变;

  D、两物体有相对运动趋势。

  ⅱ静摩擦力的方向:总跟接触面相切,并总跟物体的相对运动趋势相反。

  说明:

  ①运动的物体可以受到静摩擦力的作用。

  ②静摩擦力的方向可以与运动方向相同,可以相反,还可以成任一夹角θ。

  ③静摩擦力可以是阻力也可以是动力。

  ⅲ静摩擦力的大小:两物体间的静摩擦力的取值范围0

  说明:

  ①静摩擦力是被动力,其作用是与使物体产生运动趋势的力相平衡,在取值范围内是根据物体的“需要”取值,所以与正压力无关。

  ②静摩擦力大小决定于正压力与静摩擦因数(选学)Fm=μsFN。

  ⅳ效果:总是阻碍物体间的相对运动的趋势。

  对物体进行受力分析是解决力学问题的基础,是研究力学的重要方法,受力分析的程序是:

  1、根据题意选取适当的研究对象,选取研究对象的原则是要使对物体的研究处理尽量简便,研究对象可以是单个物体,也可以是几个物体组成的系统。

  2、把研究对象从周围的环境中隔离出来,按照先场力,再接触力的顺序对物体进行受力分析,并画出物体的受力示意图,这种方法常称为隔离法。

  3、对物体受力分析时,应注意一下几点:

  (1)不要把研究对象所受的力与它对其它物体的作用力相混淆。

  (2)对于作用在物体上的每一个力都必须明确它的来源,不能无中生有。

  (3)分析的是物体受哪些“性质力”,不要把“效果力”与“性质力”重复分析。

  力分解问题的关键是根据力的作用效果画出力的平行四边形,接着就转化为一个根据已知边角关系求解的几何问题

物理知识点总结14

  1、麦克斯韦的电磁场理论

  (1)变化的磁场能够在周围空间产生电场,变化的电场能够在周围空间产生磁场。

  (2)随时间均匀变化的磁场产生稳定电场。随时间不均匀变化的磁场产生变化的电场。随时间均匀变化的电场产生稳定磁场,随时间不均匀变化的电场产生变化的磁场。

  (3)变化的电场和变化的磁场总是相互关系着,形成一个不可分割的统一体,这就是电磁场。

  2、电磁波

  (1)周期性变化的电场和磁场总是互相转化,互相激励,交替产生,由发生区域向周围空间传播,形成电磁波。

  (2)电磁波是横波

  (3)电磁波可以在真空中传播,电磁波从一种介质进入另一介质,频率不变、波速和波长均发生变化,电磁波传播速度v等于波长λ和频率f的乘积,即v=λf,任何频率的电磁波在真空中的传播速度都等于真空中的光速c=3.00×108m/s。

  高三物理知识点3摩擦力

  (1)产生的条件:

  1、相互接触的物体间存在压力;2、接触面不光滑;

  3、接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可。

  (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反。

  (3)判断静摩擦力方向的方法:

  1、假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同。然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向。

  2、平衡法:根据二力平衡条件可以判断静摩擦力的方向。

  (4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解。

  1、滑动摩擦力大小:利用公式f=μFN进行计算,其中FN是物体的正压力,不一定等于物体的重力,甚至可能和重力无关。或者根据物体的运动状态,利用平衡条件或牛顿定律来求解。

  2、静摩擦力大小:静摩擦力大小可在0与fmax之间变化,一般应根据物体的运动状态由平衡条件或牛顿定律来求解。

  高三物理知识点4力学知识点

  1、力:

  力是物体之间的相互作用,有力必有施力物体和受力物体。力的大小、方向、作用点叫力的三要素。用一条有向线段把力的三要素表示出来的方法叫力的图示。

  按照力命名的依据不同,可以把力分为按性质命名的力(例如:重力、弹力、摩擦力、分子力、电磁力等。)按效果命名的力(例如:拉力、压力、支持力、动力、阻力等)。

  力的作用效果:形变;改变运动状态。

  2、重力:

  由于地球的'吸引而使物体受到的力。重力的大小G=mg,方向竖直向下。作用点叫物体的重心;重心的位置与物体的质量分布和形状有关。质量均匀分布,形状规则的物体的重心在其几何中心处。薄板类物体的重心可用悬挂法确定

  3、弹力:

  (1)内容:发生形变的物体,由于要恢复原状,会对跟它接触的且使其发生形变的物体产生力的作用,这种力叫弹力。

  (2)条件:接触;形变。但物体的形变不能超过弹性限度。

  (3)弹力的方向和产生弹力的那个形变方向相反。(平面接触面间产生的弹力,其方向垂直于接触面;曲面接触面间产生的弹力,其方向垂直于过研究点的曲面的切面;点面接触处产生的弹力,其方向垂直于面、绳子产生的弹力的方向沿绳子所在的直线。)

  (4)大小:弹簧的弹力大小由F=kx计算,一般情况弹力的大小与物体同时所受的其他力及物体的运动状态有关,应结合平衡条件或牛顿定律确定。

  4、摩擦力:

  (1)摩擦力产生的条件:接触面粗糙、有弹力作用、有相对运动(或相对运动趋势),三者缺一不可。

  (2)摩擦力的方向:跟接触面相切,与相对运动或相对运动趋势方向相反。但注意摩擦力的方向和物体运动方向可能相同,也可能相反,还可能成任意角度。

  高中物理知识点总结:力学部分力学的基本规律之:匀变速直线运动的基本规律(12个方程);三力共点平衡的特点;牛顿运动定律(牛顿第一、第二、第三定律);力学的基本规律之:万有引力定律;天体运动的基本规律(行星、人造地球卫星、万有引力完全充当向心力、近地极地同步三颗特殊卫星、变轨问题);力学的基本规律之:动量定理与动能定理(力与物体速度变化的关系—冲量与动量变化的关系—功与能量变化的关系);动量守恒定律(四类守恒条件、方程、应用过程);功能基本关系(功是能量转化的量度)力学的基本规律之:重力做功与重力势能变化的关系(重力、分子力、电场力、引力做功的特点);

  功能原理(非重力做功与物体机械能变化之间的关系);力学的基本规律之:机械能守恒定律(守恒条件、方程、应用步骤);简谐运动的基本规律(两个理想化模型一次全振动四个过程五个物理量、简谐运动的对称性、单摆的振动周期公式);简谐运动的图像应用;简谐波的传播特点;波长、波速、周期的关系;简谐波的图像应用。

  1、电路的组成:电源、开关、用电器、导线。

  2、电路的三种状态:通路、断路、短路。

  3、电流有分支的是并联,电流只有一条通路的是串联。

  4、在家庭电路中,用电器都是并联的。

  5、电荷的定向移动形成电流(金属导体里自由电子定向移动的方向与电流方向相反)。

  6、电流表不能直接与电源相连,电压表在不超出其测量范围的情况下可以。

  7、电压是形成电流的原因。

  8、安全电压应低于24V。

  9、金属导体的电阻随温度的升高而增大。

  10、影响电阻大小的因素有:材料、长度、横截面积、温度(温度有时不考虑)。

  11、滑动变阻器和电阻箱都是靠改变接入电路中电阻丝的长度来改变电阻的。

  12、利用欧姆定律公式要注意I、U、R三个量是对同一段导体而言的。

  13、伏安法测电阻原理:R=伏安法测电功率原理:P=UI

  14、串联电路中:电压、电功和电功率与电阻成正比

  15、并联电路中:电流、电功和电功率与电阻成反比16。"220V、100W"的灯泡比"220V、40W"的灯泡电阻小,灯丝粗。

物理知识点总结15

  杠杆是中学学习的一种简单机械,在学习中要了解杠杆的定义,理解杠杆的五要素(支点、动力、阻力、动力臂、阻力臂),并能够在图中表示出他们,可以画出实际的杠杆简图。运用杠杆的平衡条件(动力×动力臂=阻力×阻力臂,即:F1L1=F2L2)解决实际问题,可以分析天平、杆秤等工具来理解。知道杠杆的几种类别,并能列举实例说明。

  省力杠杆:撬杠;费力杠杆:门把手;等臂杠杆:托盘天平。

  常见考法

  本知识点的考查形式多变,常见的有选择题、填空题、画图题等,考查的`知识点多在:杠杆的要素、杠杆平衡的条件以及杠杆的分类。

  误区提醒

  1、杠杆的平衡条件:动力×动力臂=阻力×阻力臂,即:F1L1=F2L2。

  2、杠杆的分类:

  (1)省力杠杆:L1>L2,F12。动力臂越长越省力(费距离)。

  (2)费力杠杆:L12,F1>F2。动力臂越短越费力(省距离)。

  (3)等臂杠杆:L1=L2,F1=F2。不省力也不费力。

  【典型例题】

  例析:

  杠杆OA在重物G和F1力的作用下,处于水平位置且保持平衡。如果用力F2代替F1,使杠杆仍然在图中所示位置保持平衡,下面各力关系正确的是(B为OA的中点)()

  A.F1>F2=G/2B.F1=F2>GC.F12=2GD.F1>F2>G

  解析:当杠杆OA受两个作用力F1(或F2)和右端绳子拉力F而处于平衡状态时,只要比较F1、F2二力关于对支点的力臂的长短,即可找到二力的大小关系。

  答案:正确选项为D。

【物理知识点总结】相关文章:

物理知识点总结05-28

物理知识点的总结07-19

物理知识点总结11-19

物理的知识点总结06-09

物理知识点总结03-26

物理知识点总结04-25

初中物理知识点总结08-17

物理必考知识点总结01-09

中考物理知识点总结11-14

中考物理知识点总结07-31