(优选)高中物理知识点总结15篇
总结就是对一个时期的学习、工作或其完成情况进行一次全面系统的回顾和分析的书面材料,它可以有效锻炼我们的语言组织能力,让我们来为自己写一份总结吧。那么我们该怎么去写总结呢?以下是小编精心整理的高中物理知识点总结,供大家参考借鉴,希望可以帮助到有需要的朋友。
高中物理知识点总结1
1、1785年法国物理学家库仑:借助卡文迪许扭秤装置并类比万有引力定律,通过实验发现了电荷之间的相互作用规律——库仑定律。
2、1826年德国物理学家xxx:通过实验得出导体中的电流跟它两端的电压成正比,跟它的电阻成反比即xxx定律。
3、1820年,丹麦物理学家xxx:电流可以使周围的磁针发生偏转,称为电流的磁效应。
4、1831年英国物理学家法拉第:发现了由磁场产生电流的条件和规律——电磁感应现象。
5、1834年,俄国物理学家楞次:确定感应电流方向的定律——楞次定律。
6、1864年英国物理学家xxx韦:预言了电磁波的存在,指出光是一种电磁波,并从理论上得出光速等于电磁波的速度,为光的电磁理论奠定了基础。
7、1888年德国物理学家赫兹:用莱顿瓶所做的.实验证实了电磁波的存在并测定了电磁波的传播速度等于光速并率先发现“光电效应现象”。
高中物理知识点总结2
知识点:力和运动
受力分析、物体的平衡及其条件,是每年必考知识点。
预计在20xx年高考中,本专题内容仍然是高考命题的重点和热点,从近几年的试题难度看,本专题单独命题,难度可能不大,重在对基础知识与基本应用的考查,其中卫星导航、航天工程、宇宙探测、体育运动、科技与生活热点问题要特别关注。
知识点:动量和能量
安徽省高考对本专题的知识点考查频率非常高,每年必考,对动能定理、机械能守恒定律、功能关系考查难度较大。
“动量和能量观点是贯穿整个物理学最基本的观点,动量守恒定律、能量守恒定律是自然界中普遍适用的基本规律,涉及面广、综合性强、能力要求高,多年的压轴题均与本专题知识有关。”杨坤预计,在20xx年高考中,会继续延续近两年的命题特点,一种可能是以功——功率、动能定理和机械能守恒定律为考查热点,主要以选择题的形式出现,考查考生对基本概念、规律的掌握情况和初步应用的能力。另一种可能是与牛顿运动定律、曲线运动、电场和电磁感应等知识综合起来考查,题型以计算题为主。考题紧密联系生产生活、现代科技等问题,如传送带的功率消耗、站台的节能设计、弹簧中的能量、碰撞中的动量守恒问题等。
知识点:带电粒子在电场和磁场中的运动
从历年来试题的难度上看,大多属于中等难度和较难的题,考题常以科学技术的具体问题为背景,考查从实际问题中获取并处理信息,解决实际问题的能力。
计算题主要考查带电粒子在电场、磁场中的运动和在复合场中的运动,特别是带电粒子在有界磁场、组合场中的运动,涉及运动轨迹的几何分析和临界分析,考查的可能性较大。
“20xx年高考理综物理试题仍将突出对电场和磁场中运动的考查,考查形式既可以是选择题也可以是计算题,选择题用来考查场的描述和性质、场力。” 杨坤分析,计算题主要考查带电粒子在电场、磁场中的运动和在复合场中的运动,特别是带电粒子在有界磁场、组合场中的运动,涉及运动轨迹的几何分析和临界分析,考查的可能性较大。其中电场和磁场知识与生产技术、生活实际、科学研究相结合,如示波管、质谱仪、回旋加速器、速度选择器和磁流体发电机等物理模型的应用问题要特别注意。
知识点:电磁感应和电路的分析、计算
在20xx年高考中对本专题知识的考查可能是与其他知识点进行综合考查,突出考查电磁感应、电路等部分内容。
考查的热点内容可能是滑轨类问题、线框穿越有界匀强磁场问题、电磁感应图像问题和电磁感应中的能量问题。
从近四年高考试卷知识点分布来看,高考对本专题的内容考查频率比较高,特别是电磁感应部分,每年必考。“对本专题知识点的考查,安徽省高考试题常以选择题的形式出现,但也有以计算题的形式出现的。”杨坤分析,对电路的.考查则经常是与实验考查相结合,对串并联电路考查较浅,对交流电的考查相对来说较少而且偏易,对电磁感应的考查相对来说难度偏大,而且经常与其他知识点进行综合考查,不仅考查考生对基础知识和基本规律的掌握,还考查考生对基础知识和基本规律的理解与应用。
“预计在20xx年高考中对本专题知识的考查可能是与其他知识点进行综合考查,突出考查电磁感应、电路等部分内容。”杨坤老师强调,考查的热点内容可能是滑轨类问题、线框穿越有界匀强磁场问题、电磁感应图像问题和电磁感应中的能量问题,“在考试说明的题例中增加了滑轨类问题的实例,这或许是一个信号,希望能引起大家的注意。”
高中物理知识点总结3
力是物体间的相互作用
1.力的国际单位是牛顿,用N表示;
2.力的图示:用一条带箭头的有向线段表示力的大小、方向、作用点;
3.力的示意图:用一个带箭头的线段表示力的方向;
4.力按照性质可分为:重力、弹力、摩擦力、分子力、电场力、磁场力、核力等等;
重力:由于地球对物体的吸引而使物体受到的力;
a.重力不是万有引力而是万有引力的一个分力;
b.重力的方向总是竖直向下的(垂直于水平面向下)
c.测量重力的仪器是弹簧秤;
d.重心是物体各部分受到重力的等效作用点,只有具有规则几何外形、质量分布均匀的物体其重心才是其几何中心;
弹力:发生形变的物体为了恢复形变而对跟它接触的物体产生的作用力;
a.产生弹力的条件:二物体接触、且有形变;施力物体发生形变产生弹力;
b.弹力包括:支持力、压力、推力、拉力等等;
c.支持力(压力)的方向总是垂直于接触面并指向被支持或被压的物体;拉力的方向总是沿着绳子的收缩方向;
d.在弹性限度内弹力跟形变量成正比;F=Kx
摩擦力:两个相互接触的物体发生相对运动或相对运动趋势时,受到阻碍物体相对运动的力,叫摩擦力;
a.产生磨擦力的条件:物体接触、表面粗糙、有挤压、有相对运动或相对运动趋势;有弹力不一定有摩擦力,但有摩擦力二物间就一定有弹力;
b.摩擦力的方向和物体相对运动(或相对运动趋势)方向相反;
c.滑动摩擦力的大小F滑=μFN压力的大小不一定等于物体的重力;
d.静摩擦力的大小等于使物体发生相对运动趋势的外力;
合力、分力:如果物体受到几个力的作用效果和一个力的作用效果相同,则这个力叫那几个力的合力,那几个力叫这个力的分力;
a.合力与分力的作用效果相同;
b.合力与分力之间遵守平行四边形定则:用两条表示力的线段为临边作平行四边形,则这两边所夹的对角线就表示二力的合力;
c.合力大于或等于二分力之差,小于或等于二分力之和;
d.分解力时,通常把力按其作用效果进行分解;或把力沿物体运动(或运动趋势)方向、及其垂直方向进行分解;(力的正交分解法);
矢量
矢量:既有大小又有方向的物理量(如:力、位移、速度、加速度、动量、冲量)
标量:只有大小没有方向的物力量(如:时间、速率、功、功率、路程、电流、磁通量、能量)
直线运动
物体处于平衡状态(静止、匀速直线运动状态)的条件:物体所受合外力等于零;
(1)在三个共点力作用下的物体处于平衡状态者任意两个力的合力与第三个力等大反向;
(2)在N个共点力作用下物体处于`平衡状态,则任意第N个力与(N-1)个力的合力等大反向;
(3)处于平衡状态的物体在任意两个相互垂直方向的合力为零;
机械运动
机械运动:一物体相对其它物体的位置变化。
1.参考系:为研究物体运动假定不动的物体;又名参照物(参照物不一定静止);
2.质点:只考虑物体的质量、不考虑其大小、形状的物体;
(1)质点是一理想化模型;
(2)把物体视为质点的条件:物体的形状、大小相对所研究对象小的可忽略不计时;
如:研究地球绕太阳运动,火车从北京到上海;
3.时刻、时间间隔:在表示时间的数轴上,时刻是一点、时间间隔是一线段;
例:5点正、9点、7点30是时刻,45分钟、3小时是时间间隔;
4.位移:从起点到终点的有相线段,位移是矢量,用有相线段表示;路程:描述质点运动轨迹的曲线;
(1)位移为零、路程不一定为零;路程为零,位移一定为零;
(2)只有当质点作单向直线运动时,质点的位移才等于路程;
(3)位移的国际单位是米,用m表示
5.位移时间图象:建立一直角坐标系,横轴表示时间,纵轴表示位移;
(1)匀速直线运动的位移图像是一条与横轴平行的直线;
(2)匀变速直线运动的位移图像是一条倾斜直线;
(3)位移图像与横轴夹角的正切值表示速度;夹角越大,速度越大;
6.速度是表示质点运动快慢的物理量
(1)物体在某一瞬间的速度较瞬时速度;物体在某一段时间的速度叫平均速度;
(2)速率只表示速度的大小,是标量;
7.加速度:是描述物体速度变化快慢的物理量;
(1)加速度的定义式:a=vt-v0/t
(2)加速度的大小与物体速度大小无关;
(3)速度大加速度不一定大;速度为零加速度不一定为零;加速度为零速度不一定为零;
(4)速度改变等于末速减初速。加速度等于速度改变与所用时间的比值(速度的变化率)加速度大小与速度改变量的大小无关;
(5)加速度是矢量,加速度的方向和速度变化方向相同;
(6)加速度的.国际单位是m/s2
匀变速直线运动
1.速度:匀变速直线运动中速度和时间的关系:vt=v0+at
注:一般我们以初速度的方向为正方向,则物体作加速运动时,a取正值,物体作减速运动时,a取负值;
(1)作匀变速直线运动的物体中间时刻的瞬时速度等于初速度和末速度的平均;
(2)作匀变速运动的物体中间时刻的瞬时速度等于平均速度,等于初速度和末速度的平均;
2.位移:匀变速直线运动位移和时间的关系:s=v0t+1/2at2
注意:当物体作加速运动时a取正值,当物体作减速运动时a取负值;
3.推论:2as=vt2-v02
4.作匀变速直线运动的物体在两个连续相等时间间隔内位移之差等于定植:s2-s1=aT2
5.初速度为零的匀加速直线运动:前1秒,前2秒,……位移和时间的关系是:位移之比等于时间的平方比;第1秒、第2秒……的位移与时间的关系是:位移之比等于奇数比;
自由落体运动
只在重力作用下从高处静止下落的物体所作的运动。
1.位移公式:h=1/2gt2
2.速度公式:vt=gt
3.推论:2gh=vt2
牛顿定律
1.牛顿第一定律(惯性定律):一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种做状态为止。
a.只有当物体所受合外力为零时,物体才能处于静止或匀速直线运动状态;
b.力是该变物体速度的原因;
c.力是改变物体运动状态的原因(物体的速度不变,其运动状态就不变)
d力是产生加速度的原因;
2.惯性:物体保持匀速直线运动或静止状态的性质叫惯性。
a.一切物体都有惯性;
b.惯性的大小由物体的质量决定;
c.惯性是描述物体运动状态改变难易的物理量;
3.牛顿第二定律:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟物体所受合外力的方向相同。
a.数学表达式:a=F合/m;
b.加速度随力的产生而产生、变化而变化、消失而消失;
c.当物体所受力的方向和运动方向一致时,物体加速;当物体所受力的方向和运动方向相反时,物体减速。
d.力的单位牛顿的定义:使质量为1kg的物体产生1m/s2加速度的力,叫1N;
4.牛顿第三定律:物体间的作用力和反作用总是等大、反向、作用在同一条直线上的;
a.作用力和反作用力同时产生、同时变化、同时消失;
b.作用力和反作用力与平衡力的根本区别是作用力和反作用力作用在两个相互作用的物体上,平衡力作用在同一物体上;
曲线运动·万有引力
曲线运动
质点的运动轨迹是曲线的运动
1.曲线运动中速度的方向在时刻改变,质点在某一点(或某一时刻)的速度方向是曲线在这一点的切线方向
2.质点作曲线运动的条件:质点所受合外力的方向与其运动方向不在同一条直线上;且轨迹向其受力方向偏折;
3.曲线运动的特点
曲线运动一定是变速运动;
曲线运动的加速度(合外力)与其速度方向不在同一条直线上;
4.力的作用
力的方向与运动方向一致时,力改变速度的大小;
力的方向与运动方向垂直时,力改变速度的方向;
力的方向与速度方向既不垂直,又不平行时,力既搞变速度大小又改变速度的方向;
运动的合成与分解
1.判断和运动的方法:物体实际所作的运动是合运动
2.合运动与分运动的等时性:合运动与各分运动所用时间始终相等;
3.合位移和分位移,合速度和分速度,和加速度与分加速度均遵守平行四边形定则;
平抛运动
被水平抛出的物体在在重力作用下所作的运动叫平抛运动。
1.平抛运动的实质:物体在水平方向上作匀速直线运动,在竖直方向上作自由落体运动的合运动;
2.水平方向上的匀速直线运动和竖直方向上的自由落体运动具有等时性;
3.求解方法:分别研究水平方向和竖直方向上的二分运动,在用平行四边形定则求和运动;
匀速圆周运动
质点沿圆周运动,如果在任何相等的时间里通过的圆弧相等,这种运动就叫做匀速圆周运动。
1.线速度的大小等于弧长除以时间:v=s/t,线速度方向就是该点的切线方向;
2.角速度的大小等于质点转过的角度除以所用时间:ω=Φ/t
3.角速度、线速度、周期、频率间的关系:
(1)v=2πr/T;
(2)ω=2π/T;
(3)V=ωr;
(4)f=1/T;
4.向心力:
(1)定义:做匀速圆周运动的物体受到的沿半径指向圆心的力,这个力叫向心力。
(2)方向:总是指向圆心,与速度方向垂直。
(3)特点:①只改变速度方向,不改变速度大小
②是根据作用效果命名的。
(4)计算公式:F向=mv2/r=mω2r
5.向心加速度:a向=v2/r=ω2r
开普勒三定律
1.开普勒第一定律:所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上;
说明:在中学间段,若无特殊说明,一般都把行星的运动轨迹认为是圆;
2.开普勒第三定律:所有行星与太阳的连线在相同的时间内扫过的面积相等;
3.开普勒第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等;
公式:R3/T2=K;
说明:
(1)R表示轨道的半长轴,T表示公转周期,K是常数,其大小之与太阳有关;
(2)当把行星的轨迹视为圆时,R表示愿的半径;
(3)该公式亦适用与其它天体,如绕地球运动的卫星;
万有引力定律
自然界中任何两个物体都是互相吸引的,引力的大小跟这两个物体的质量成正比,跟它们的距离的二次方成反比。
1.计算公式
F:两个物体之间的引力
G:万有引力常量
M1:物体1的质量
M2:物体2的质量
R:两个物体之间的距离
依照国际单位制,F的单位为牛顿(N),m1和m2的单位为千克(kg),r的单位为米(m),常数G近似地等于
6.67×10^-11N·m^2/kg^2(牛顿平方米每二次方千克)。
2.解决天体运动问题的思路:
(1)应用万有引力等于向心力;应用匀速圆周运动的线速度、周期公式;
(2)应用在地球表面的物体万有引力等于重力;
(3)如果要求密度,则用:m=ρV,V=4πR3/3
机械能
功
功等于力和物体沿力的方向的位移的乘积;
1.计算公式:w=Fs;
2.推论:w=Fscosθ,θ为力和位移间的夹角;
3.功是标量,但有正、负之分,力和位移间的夹角为锐角时,力作正功,力与位移间的夹角是钝角时,力作负功;
功率
功率是表示物体做功快慢的物理量。
1.求平均功率:P=W/t;
2.求瞬时功率:p=Fv,当v是平均速度时,可求平均功率;
3.功、功率是标量;
功和能之间的关系
功是能的转换量度;做功的过程就是能量转换的过程,做了多少功,就有多少能发生了转化;
动能定理
合外力做的功等于物体动能的变化。
1.数学表达式:w合=mvt2/2-mv02/2
2.适用范围:既可求恒力的功亦可求变力的功;
3.应用动能定理解题的优点:只考虑物体的初、末态,不管其中间的运动过程;
4.应用动能定理解题的步骤:
(1)对物体进行正确的受力分析,求出合外力及其做的功;
(2)确定物体的初态和末态,表示出初、末态的动能;
(3)应用动能定理建立方程、求解
重力势能
物体的重力势能等于物体的重量和它的速度的乘积。
1.重力势能用EP来表示;
2.重力势能的数学表达式:EP=mgh;
3.重力势能是标量,其国际单位是焦耳;
4.重力势能具有相对性:其大小和所选参考系有关;
5.重力做功与重力势能间的关系
(1)物体被举高,重力做负功,重力势能增加;
(2)物体下落,重力做正功,重力势能减小;
(3)重力做的功只与物体初、末为置的高度有关,与物体运动的路径无关
机械能守恒定律
在只有重力(或弹簧弹力做功)的情形下,物体的动能和势能(重力势能、弹簧的弹性势能)发生相互转化,但机械能的总量保持不变。
1.机械能守恒定律的适用条件:只有重力或弹簧弹力做功。
2.机械能守恒定律的数学表达式:
3.在只有重力或弹簧弹力做功时,物体的机械能处处相等;
4.应用机械能守恒定律的解题思路
(1)确定研究对象,和研究过程;
(2)分析研究对象在研究过程中的受力,判断是否遵受机械能守恒定律;
(3)恰当选择参考平面,表示出初、末状态的机械能;
(4)应用机械能守恒定律,立方程、求解;
高中物理知识点总结4
高中物理的确难,实用口诀能帮忙。物理公式、规律主要通过理解和运用来记忆,本口诀也要通过理解,发挥韵调特点,能对高中物理重要知识记忆起辅助作用。
一、运动的`描述
1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。物体位置的变化,准确描述用位移,运动快慢s比t,a用δv与t比。
2.运用一般公式法,平均速度是简法,中间时刻速度法,初速度零比例法,再加几何图像法,求解运动好方法。自由落体是实例,初速为零a等g.竖直上抛知初速,上升最高心有数,飞行时间上下回,整个过程匀减速。中心时刻的速度,平均速度相等数;求加速度有好方,δs等at平方。
3.速度决定物体动,速度加速度方向中,同向加速反向减,垂直拐弯莫前冲。
二、力
1.解力学题堡垒坚,受力分析是关键;分析受力性质力,根据效果来处理。
2.分析受力要仔细,定量计算七种力;重力有无看
提示,根据状态定弹力;先有弹力后摩擦,相对运动是依据;万有引力在万物,电场力存在定无疑;洛仑兹力安培力,二者实质是统一;相互垂直力最大,平行无力要切记。
3.同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明;两力合力小和大,两个力成q角夹,平行四边形定法;合力大小随q变,只在最大最小间,多力合力合另边。
多力问题状态揭,正交分解来解决,三角函数能化解。
4.力学问题方法多,整体隔离和假设;整体只需看外力,求解内力隔离做;状态相同用整体,否则隔离用得多;即使状态不相同,整体牛二也可做;假设某力有或无,根据计算来定夺;极限法抓临界态,程序法按顺序做;正交分解选坐标,轴上矢量尽量多。
三、牛顿运动定律
1.f等ma,牛顿二定律,产生加速度,原因就是力。
合力与a同方向,速度变量定a向,a变小则u可大,只要a与u同向。
2.n、t等力是视重,mg乘积是实重;超重失重视视重,其中不变是实重;加速上升是超重,减速下降也超重;失重由加降减升定,完全失重视重零
四、曲线运动、万有引力
1.运动轨迹为曲线,向心力存在是条件,曲线运动速度变,方向就是该点切线。
2.圆周运动向心力,供需关系在心里,径向合力提供足,需mu平方比r,mrw平方也需,供求平衡不心离。
3.万有引力因质量生,存在于世界万物中,皆因天体质量大,万有引力显神通。卫星绕着天体行,快慢运动的卫星,均由距离来决定,距离越近它越快,距离越远越慢行,同步卫星速度定,定点赤道上空行。
五、机械能与能量
1.确定状态找动能,分析过程找力功,正功负功加一起,动能增量与它同。
2.明确两态机械能,再看过程力做功,“重力”之外功为零,初态末态能量同。
3.确定状态找量能,再看过程力做功。有功就有能转变,初态末态能量同。
六、电场
1.库仑定律电荷力,万有引力引场力,好像是孪生兄弟,kqq与r平方比。
2.电荷周围有电场,f比q定义场强。kq比r2点电荷,u比d是匀强电场。
电场强度是矢量,正电荷受力定方向。描绘电场用场线,疏密表示弱和强。
场能性质是电势,场线方向电势降。场力做功是qu,动能定理不能忘。
4.电场中有等势面,与它垂直画场线。方向由高指向低,面密线密是特点。
七、恒定电流
1.电荷定向移动时,电流等于q比t。自由电荷是内因,两端电压是条件。
正荷流向定方向,串电流表来计量。电源外部正流负,从负到正经内部。
2.电阻定律三因素,温度不变才得出,控制变量来论述,rl比s等电阻。
电流做功uit,电热i平方rt。电功率,w比t,电压乘电流也是。
3.基本电路联串并,分压分流要分明。复杂电路动脑筋,等效电路是关键。
4.闭合电路部分路,外电路和内电路,遵循定律属欧姆。
路端电压内压降,和就等电动势,除于总阻电流是。
八、磁场
1.磁体周围有磁场,n极受力定方向;电流周围有磁场,安培定则定方向。
2.f比il是场强,φ等bs磁通量,磁通密度φ比s,磁场强度之名异。
3.bil安培力,相互垂直要注意。
4.洛仑兹力安培力,力往左甩别忘记。
九、电磁感应
1.电磁感应磁生电,磁通变化是条件。回路闭合有电流,回路断开是电源。
感应电动势大小,磁通变化率知晓。
2.楞次定律定方向,阻碍变化是关键。导体切割磁感线,右手定则更方便。
3.楞次定律是抽象,真正理解从三方,阻碍磁通增和减,相对运动受反抗,自感电流想阻挡,能量守恒理应当。楞次先看原磁场,感生磁场将何向,全看磁通增或减,安培定则知i向。
必修和选修物理知识点汇总
十、交流电
1.匀强磁场有线圈,旋转产生交流电。电流电压电动势,变化规律是弦线。
中性面计时是正弦,平行面计时是余弦。
2.nbsω是最大值,有效值用热量来计算。
3.变压器供交流用,恒定电流不能用。
理想变压器,初级ui值,次级ui值,相等是原理。
电压之比值,正比匝数比;电流之比值,反比匝数比。
运用变压比,若求某匝数,化为匝伏比,方便地算出。
远距输电用,升压降流送,否则耗损大,用户后降压。
十一、气态方程
研究气体定质量,确定状态找参量。绝对温度用大t,体积就是容积量。
压强分析封闭物,牛顿定律帮你忙。状态参量要找准,pv比t是恒量。
十二、热力学定律
1.第一定律热力学,能量守恒好感觉。内能变化等多少,热量做功不能少。
正负符号要准确,收入支出来理解。对内做功和吸热,内能增加皆正值;对外做功和放热,内能减少皆负值。
2.热力学第二定律,热传递是不可逆,功转热和热转功,具有方向性不逆。
十三、机械振动
1.简谐振动要牢记,o为起点算位移,回复力的方向指,始终向平衡位置,
大小正比于位移,平衡位置u大极。
2.o点对称别忘记,振动强弱是振幅,振动快慢是周期,一周期走4a路,单摆周期l比g,再开方根乘2p,秒摆周期为2秒,摆长约等长1米。
到质心摆长行,单摆具有等时性。
3.振动图像描方向,从底往顶是向上,从顶往底是下向;振动图像描位移,顶点底点大位移,正负符号方向指。
十四、机械波
1.左行左坡上,右行右坡上。峰点谷点无方向。
2.顺着传播方向吧,从谷往峰想上爬,脚底总得往下蹬,上下振动迁不动。
3.不同时刻的图像,δt四分一或三,质点动向疑惑散,s等vt派用场。
十五、光学
1.自行发光是光源,同种均匀直线传。若是遇见障碍物,传播路径要改变。
反射折射两定律,折射定律是重点。光介质有折射率,(它的)定义是正弦比值,还可运用速度比,波长比值也使然。
2.全反射,要牢记,入射光线在光密。入射角大于临界角,折射光线无处觅。
十六、物理光学
1.光是一种电磁波,能产生干涉和衍射。衍射有单缝和小孔,干涉有双缝和薄膜。单缝衍射中间宽,干涉(条纹)间距差不多。小孔衍射明暗环,薄膜干涉用处多。它可用来测工件,还可制成增透膜。泊松亮斑是衍射,干涉公式要把握。〖选修3-4〗
2.光照金属能生电,入射光线有极限。光电子动能大和小,与光子频率有关联。光电子数目多和少,与光线强弱紧相连。光电效应瞬间能发生,极限频率取决逸出功。
十七、动量
1.确定状态找动量,分析过程找冲量,同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明。
2.确定状态找动量,分析过程找冲量,外力冲量若为零,初态末态动量同。
十八、原子原子核
1.原子核,中央站,电子分层围它转;向外跃迁为激发,辐射光子向内迁;光子能量hn,能级差值来计算。
2.原子核,能改变,αβ两衰变。α粒是氦核,电子流是β射线。
γ光子不单有,伴随衰变而出现。铀核分开是裂变,中子撞击是条件。
裂变可造原子弹,还可用它来发电。轻核聚合是聚变,温度极高是条件。
变可以造氢弹,还是太阳能量源;和平利用前景好,可惜至今未实现。
高中物理知识点总结5
一.时间和时刻:
①时刻的定义:时刻是指某一瞬时,是时间轴上的一点,相对于位置、瞬时速度、等状态量,一般说的“2秒末”,“速度2m/s”都是指时刻。
②时间的定义:时间是指两个时刻之间的间隔,是时间轴上的一段,通常说的“几秒内”,“第几秒”都是指的时间。
二.位移和路程:
①位移的定义:位移表示质点在空间的位置变化,是矢量。位移用又向线段表示,位移的大小等于又向线段的长度,位移的方向由初始位置指向末位置。
②路程的定义:路程是物体在空间运动轨迹的长度,是一个标量。在确定的两点间路程不是确定的,它与物体的具体运动过程有关。
三.位移与路程的关系:
位移和路程是在一段时间内发生的,是过程量,两者都和参考系的选取有关系。一般情况下位移的大小并不等于路程的大小。只有当物体做单方向的直线运动是两者才相等。
1、时刻和时间间隔
(1)时刻和时间间隔可以在时间轴上表示出来。时间轴上的每一点都表示一个不同的时刻,时间轴上一段线段表示的是一段时间间隔(画出一个时间轴加以说明)。
(2)在学校实验室里常用秒表,电磁打点计时器或频闪照相的方法测量时间。
2、路程和位移
(1)路程:质点实际运动轨迹的长度,它只有大小没有方向,是标量。
(2)位移:是表示质点位置变动的物理量,有大小和方向,是矢量。它是用一条自初始位置指向末位置的有向线段来表示,位移的大小等于质点始、末位置间的距离,位移的方向由初位置指向末位置,位移只取决于初、末位置,与运动路径无关。
(3)位移和路程的区别:
(4)一般来说,位移的大小不等于路程。只有质点做方向不变的无往返的`直线运动时位移大小才等于路程。
3、矢量和标量
(1)矢量:既有大小、又有方向的物理量。
(2)标量:只有大小,没有方向的物理量。
4、直线运动的位置和位移:在直线运动中,两点的位置坐标之差值就表示物体的位移。
要想提高学习效率,首先要端正自己的学习态度.养成良好学习习惯,做好课前预习是学好物理的前提;主动高效地听课是学好物理的关键;及时整理好学习笔记,课后的练习要到位,多做题才能丰富自己的解题经验.
高中物理知识点总结6
(1)摩擦力产生的条件:接触面粗糙、有弹力作用、有相对运动(或相对运动趋势),三者缺一不行。
(2)摩擦力的方向:跟接触(面相)切,与相对运动或相对运动趋势方向相反。但留意摩擦力的方向和物体运动方向可能相同,也可能相反,还可能成任意角度。
说明:
a、FN为接触面间的弹力,可以大于G;也可以等于G;也可以小于G
b、N为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力FN无关。
②静摩擦:由物体的平衡条件或牛顿其次定律求解,与正压力无关。
静摩擦力的详细数值可用以下(方法)来计算:一是依据平衡条件,二是依据牛顿其次定律求出合力,然后通过受力分析确定。
(4)留意事项:
a、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成肯定夹角。
b、摩擦力可以作正功,也可以作负功,还可以不作功。
c、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方
向相反。
d、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。
(高一物理)必修1摩擦力基本要求
1、知道静摩擦力的产生条件,会推断静摩擦力的方向。
2、通过试验探究静摩擦力的大小,把握静摩擦力的最大值及变化范围。
3、知道滑动摩擦力的产生条件,会推断滑动摩擦力的方向。
4、会运用公式F=μFN计算滑动摩擦力的大小。
5、知道动摩擦因数无单位,了解动摩擦因数与哪些因素有关。
6、能用二力平衡条件推断静摩擦力的大小和方向。
高中(物理(学习方法))
1、明确学习目的,激发学习爱好
爱好是较好的老师,有了爱好,才情愿学习。情愿学习,才能找到学习的乐趣。有了乐趣,长期坚持,就产生了较稳定的学习爱好—志趣。把学习变成一种自觉的行为,是成长生涯中必不行缺少的一件事。经日积月累,终会有所成效。
2、把握学习策略,擅长整体把握
“整体大于部分之和”,在任何一段材料学习之前,先从整体、宏观去了解其主要内容和方法、结构和思路、内在的规律关系等,再从局部、细节入手,把握各自学问点,明确它们之间的内在联系,并强调应用,在应用中内化、感悟,通过同化和顺应两种方式,丰富同学们的学问结构,建立多节点相连的学问网络。
较后再从整体的角度端详学习过程,对陈述性、程序性和策略性学问能充分的`理解和应用。如“序言”教学设计中我们是先粗读课本,从封面、插图、名目到各章内容、支配题例等,整体上了解高一物理是干什么的,有哪些内容,是如何支配的。然后再说“序言”的内容,我们仍旧是先找出“序言”分几部分,每部分解决的核心问题是什么,该核心问题举了哪些例子等,之后盼望同学们通过序言的学习达到如下共识识:高中物理的有用性、好玩性;有信念学好高中物理;学好物理有法可依。
3、把握学习方法,达到事半功倍
物理学习同其他学问学习一样,大的方面,应把握好预习、听课、复习、作业、反馈、再复习巩固、再练习深化提高等环节。小的方面,要重视听好每一节课和做好每一道题。对教材内容,第一遍读时要细、慢、思、记。仔细研读,明确思路,乐观思索、辩析概念,把握规律,学会应用。做练习,要遵循“读、审、建、构、解、思”六步骤。即拿到一道题后,要读明题意,审清条件,建立联系,构造模型,正确解答,分类(反思)。
对待复习,要做到准时复习,抢在遗忘之前进行。要有效复习,举一反三、纵横联系,留意学问结构的充实,留意技能、技巧的把握。在学习过程,留意合作学习,强调与老师、与同学的合作和沟通,不怕出丑,敢于发表自己见解,勇于质疑,和老师、同学共同理解、共同进步。
对待现实事物和现象,要有问题意识,有意识地从物理学的眼光去端详,在情景之中培育探究精神。重视过程学习,加强情感体验。在学习中还要勤动手、多试验、细观看、善(总结),获得直接(阅历),培育实践力量。
还要留意物理学问和方法与(其它)学科学问与方法的交叉与渗透,相互借鉴,触类旁通,从微小处加以比较和思索,发觉别人所没有发觉的方法,增加创新力量。每个同学都是一个独特的个体,没有一个现成的完全适合自己的学习模式,只有每个人依据自己的性格特点、学习习惯,摸索出一套合适的学习方法,才能提高学习的针对性、实效性。
4、树立学习信念,增加耐挫力量
挑战与机遇并存,困难与盼望同在。每个同学都要树立学好物理的信念,同时要有足够的心理预备,学好物理决不是一蹴而就的。确定有困难,确定受挫折,但要永不言败,永久追求,增加耐挫力量。
要熟悉到学习是一个过程,只要乐观投入,你的学问与技能、情感、态度和价值观都会发生乐观的变化。学习的结果也是多元的,收获也是丰富的。在学习的阶段性评估中,和自己的过去比,学问把握的丰富了,解题方法增多了,感觉自己提高了,从而对自己增加信念;和其他同学比,我有肯定的优势,还有一些不足,精确定位,找准努力方向。要自我激励,不要自我挫败;要接纳自己、宽容自己;自我观赏但不自我沉醉,激励自己更加努力学习,争取更大进步。
高中物理知识点总结7
一、力学
1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);
2、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。
同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。
4、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。
5、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。
6、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。
7、17世纪,德国天文学家开普勒提出开普勒三大定律;
8、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;
9、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。10、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;
俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。
11、1957年10月,苏联发射第一颗人造地球卫星;
1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。
二、电磁学
12、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律库仑定律,并测出了静电力常量k的值。
13、16世纪末,英国人吉伯第一个研究了摩擦是物体带电的现象。18世纪中叶,美国人富兰克林提出了正、负电荷的概念。
1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。
14、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。
15、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。16、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。
17、1911年,荷兰科学家昂纳斯发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象超导现象。
18、19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳定律。19、1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。
20、法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,并总结出安培定则(右手螺旋定则)判断电流与磁场的`相互关系和左手定则判断通电导线在磁场中受到磁场力的方向。
21、荷兰物理学家洛伦兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛伦兹力)的观点。
22、汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。23、1932年,美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子。(最大动能仅取决于磁场和D形盒直径,带电粒子圆周运动周期与高频电源的周期相同)24、1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律电磁感应定律。
25、1834年,俄国物理学家楞次发表确定感应电流方向的定律楞次定律。
26、1835年,美国科学家亨利发现自感现象(因电流变化而在电路本身引起感应电动势的现象),日光灯的工作原理即为其应用之一。
三、热学
27、1827年,英国植物学家布朗发现悬浮在水中的花粉微粒不停地做无规则运动的现象布朗运动。
28、1850年,克劳修斯提出热力学第二定律的定性表述:不可能把热从低温物体传到高温物体而不产生其他影响,称为克劳修斯表述。次年开尔文提出另一种表述:不可能从单一热源取热,使之完全变为有用的功而不产生其他影响,称为开尔文表述。29、1848年开尔文提出热力学温标,指出绝对零度是温度的下限。
30、19世纪中叶,由德国医生迈尔、英国物理学家焦尔、德国学者亥姆霍兹最后确定能量守恒定律。
21、1642年,科学家托里拆利提出大气会产生压强,并测定了大气压强的值。四年后,帕斯卡的研究表明,大气压随高度增加而减小。
1654年,为了证实大气压的存在,德国的马德堡市做了一个轰动一时的实验马德堡半球实验。
四、波动学
22、17世纪,荷兰物理学家惠更斯确定了单摆周期公式。周期是2s的单摆叫秒摆。23、1690年,荷兰物理学家惠更斯提出了机械波的波动现象规律惠更斯原理。24、奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象多普勒效应。
五、光学
25、1621年,荷兰数学家斯涅耳找到了入射角与折射角之间的规律折射定律。26、1801年,英国物理学家托马斯?杨成功地观察到了光的干涉现象。
27、1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射泊松亮斑。28、1864年,英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场理论,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。
29、1887年,德国物理学家赫兹用实验证实了电磁波的存在,并测定了电磁波的传播速度等于光速。30、1894年,意大利马可尼和俄国波波夫分别发明了无线电报,揭开无线电通信的新篇章。
31、1800年,英国物理学家赫歇耳发现红外线;1801年,德国物理学家里特发现紫外线;
1895年,德国物理学家伦琴发现X射线(伦琴射线),并为他夫人的手拍下世界上第一张X射线的人体照片。
32、激光被誉为20世纪的“世纪之光”。
六、波粒二象性
33、1900年,德国物理学家普朗克为解释物体热辐射规律提出能量子假说:物质发射或吸收能量时,能量不是连续的(电磁波的发射和吸收不是连续的),而是一份一份的,每一份就是一个最小的能量单位,即能量子E=hν,把物理学带进了量子世界;
受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律,因此获得诺贝尔物理奖。
34、1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时康普顿效应,证实了光的粒子性。
35、1913年,丹麦物理学家玻尔提出了自己的原子结构假说,最先得出氢原子能级表达式,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。
36、1885年,瑞士的中学数学教师巴耳末总结了氢原子光谱的波长规律巴耳末系。37、1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;1927年美、英两国物理学家得到了电子束在金属晶体上的衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高。
七、相对论
38、物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验相对论(高速运动世界),②热辐射实验量子论(微观世界);
39、19世纪和20世纪之交,物理学的三大发现:X射线的发现,电子的发现,放射性的发现。
40、1905年,爱因斯坦提出了狭义相对论,有两条基本原理:
①相对性原理不同的惯性参考系中,一切物理规律都是相同的;
②光速不变原理不同的惯性参考系中,光在真空中的速度一定是c不变。狭义相对论的其他结论:
①时间和空间的相对性长度收缩和动钟变慢(或时间膨胀)
②相对论速度叠加:光速不变,与光源速度无关;一切运动物体的速度不能超过光速,即光速是物质运动速度的极限。
③相对论质量:物体运动时的质量大于静止时的质量。
41、爱因斯坦还提出了相对论中的一个重要结论质能方程式:E=mc2。
八、原子物理学
42、1858年,德国科学家普吕克尔发现了一种奇妙的射线阴极射线(高速运动的电子流)。43、1897年,汤姆生利用阴极射线管发现了电子,指出阴极射线是高速运动的电子流。说明原子可分,有复杂内部结构,并提出原子的枣糕模型。1906年,获得诺贝尔物理学奖。44、1909-1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10-15m。
45、1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核有复杂的内部结构。天然放射现象:有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变快慢与原子所处的物理和化学状态无关。46、1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,发现了质子,并预言原子核内还有另一种粒子中子。47、1932年,卢瑟福学生查德威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖。48、1934年,约里奥-居里夫妇用α粒子轰击铝箔时,发现了正电子和人工放射性同位素。
49、1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素钋(Po)镭(Ra)。
50、1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。
51、1942年,在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、水泥防护层等组成)。
52、1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。人工控制核聚变的一个可能途径是:利用强激光产生的高压照射小颗粒核燃料。
53、粒子分三大类:媒介子-传递各种相互作用的粒子,如:光子;轻子-不参与强相互作用的粒子,如:电子、中微子;
强子-参与强相互作用的粒子,如:重子(质子、中子、超子)和介子。
高中物理知识点总结8
力和运动学:
力是物体之间的相互作用。运动学研究物体位置随时间的变化。
牛顿运动定律是高中物理的核心内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态为止。
机械能守恒定律和能量守恒定律:
能量守恒定律是指能量既不会凭空产生,也不会凭空消失,它只会从一种形式转化为另一种形式,或者从一个物体转移到其他物体,而能量的总玳保持不变。
机械能守恒定律是指在一个只有保守力(见保守力与耗散力)做功的物理系{(见牛顿运动定律;亦称“势力学”)}中,动能和势能相互转化,但机械能的总量保持不变。
振动和波动:
振动是指物体沿直线或曲线并经过其平衡位置所作的往复运动。
波动是指振动在介质中的传播。
热力学定律:
热力学第一定律(能量守恒定律)世间万物总能量不会变,但能源可由一种形式转为另一种形式。
热力学第二定律(熵增定律)不可能把热从低温物体传到高温物体而不产生其他影响;不可能从单一热源取热使之完全转换为有用的功而不产生其他影响;不可逆热力过程中熵的微增量总是大于零。
总的来说,高中物理知识点需要掌握基本的物理概念、原理和数学方法,注重理解和应用,掌握物理实验技能,并通过练习加深对知识点的理解和运用能力。
高中物理知识点
1.气体的状态参量:
温度:宏观上,物体的冷热程度 高一;微观上,物体内部分子无规则运动的剧烈程度的标志,热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}
体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL
压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)
2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大
3.理想气体的`状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}
注:
(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;
(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。
高中物理重要知识点
1.光本性学说的发展简史
(1)牛顿的微粒说:认为光是高速粒子流.它能解释光的直进现象,光的反射现象.
(2)惠更斯的波动说:认为光是某种振动,以波的形式向周围传播.它能解释光的干涉和衍射现象.
2、光的干涉
光的干涉的条件是:有两个振动情况总是相同的波源,即相干波源。(相干波源的频率必须相同)。形成相干波源的方法有两种:⑴利用激光(因为激光发出的是单色性极好的光)。⑵设法将同一束光分为两束(这样两束光都来源于同一个光源,因此频率必然相等)。下面4个图分别是利用双缝、利用楔形薄膜、利用空气膜、利用平面镜形成相干光源的示意图。
2.干涉区域内产生的亮、暗纹
⑴亮纹:屏上某点到双缝的光程差等于波长的整数倍,即δ=nλ(n=0,1,2,……)
⑵暗纹:屏上某点到双缝的'光程差等于半波长的奇数倍,即δ=(n=0,1,2,……)
相邻亮纹(暗纹)间的距离。用此公式可以测定单色光的波长。用白光作双缝干涉实验时,由于白光内各种色光的波长不同,干涉条纹间距不同,所以屏的中央是白色亮纹,两边出现彩色条纹。
3.衍射----光通过很小的孔、缝或障碍物时,会在屏上出现明暗相间的条纹,且中央条纹很亮,越向边缘越暗。
⑴各种不同形状的障碍物都能使光发生衍射。
⑵发生明显衍射的条件是:障碍物(或孔)的尺寸可以跟波长相比,甚至比波长还小。(当障碍物或孔的尺寸小于0.5mm时,有明显衍射现象。)
⑶在发生明显衍射的条件下当窄缝变窄时亮斑的范围变大条纹间距离变大,而亮度变暗。
4、光的偏振现象:通过偏振片的光波,在垂直于传播方向的平面上,只沿着一个特定的方向振动,称为偏振光。光的偏振说明光是横波。
5.光的电磁说
⑴光是电磁波(麦克斯韦预言、赫兹用实验证明了正确性。)
⑵电磁波谱。波长从大到小排列顺序为:无线电波、红外线、可见光、紫外线、X射线、γ射线。各种电磁波中,除可见光以外,相邻两个波段间都有重叠。
各种电磁波的产生机理分别是:无线电波是振荡电路中自由电子的周期性运动产生的;红外线、可见光、紫外线是原子的外层电子受到激发后产生的;伦琴射线是原子的内层电子受到激发后产生的;γ射线是原子核受到激发后产生的。
⑶红外线、紫外线、X射线的主要性质及其应用举例。
种类产生主要性质应用举例
红外线一切物体都能发出热效应遥感、遥控、加热
紫外线一切高温物体能发出化学效应荧光、杀菌、合成VD2
X射线阴极射线射到固体表面穿透能力强人体透视、金属探伤
高中物理知识点归纳
1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:
(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
高中物理知识点总结9
力学:
牛顿运动定律的应用:合力为零时,加速度为零,速度大小和方向都不变;合力不为零时,加速度不为零,速度大小和方向都改变。
物体运动状态的改变:速度大小改变或速度方向改变或速度大小和方向都改变。
力的作用效果:改变物体的运动状态或改变物体的形状。
冲量和动量:力和时间的乘积是冲量,物体的质量和速度的乘积是动量。
动量守恒定律:系统不受外力或所受合外力为零时,系统内各个物体的动量相等。
功和能:物体沿着力的方向移动一段距离,力对物体做功;功是能量转化的量度。
万有引力定律:两个物体之间的引力与它们质量的乘积成正比,与它们距离的平方成反比。
热学:
物体的内能:物体内部所有分子热运动的动能和分子势能的总和。
热力学第一定律:外界对物体做的功和物体吸收的热量之和等于物体内能的增量。
热力学第二定律:不可能把热从低温物体传到高温物体而不产生其他影响;不可能从单一热源取热使之完全转换为有用的功而不产生其他影响。
电磁学:
电流、电压、电阻、电容、电感等元件的基本性质和应用。
交流电的产生和应用:交流电机的应用,变压器的工作原理等。
电磁波的产生和应用:无线电波、微波、红外线、可见光、紫外线、X射线、gamma射线等。
光学:
光的直线传播、光的.反射、光的折射和光的干涉等基本概念和应用。
本影和半影的区别和判断方法。
光在真空中和介质中的传播速度不同。
光在介质中传播时,光的强度、颜色、波长等发生变化的原因和规律。
量子物理学:
量子态的概念和描述方法。
量子力学的基本概念和规律,包括薛定谔方程等。
量子力学的应用领域,例如半导体物理、原子分子物理等。
高中物理知识点总结10
第一章电磁感应
1.两个人物:
a.法拉第:磁生电
b.奥期特:电生磁
2.产生条件:
a.闭合电路
b.磁通量发生变化注意:
①产生感应电动势的条件是只具备b
②产生感应电动势的那部分导体相当于电源。
③电源内部的电流从负极流向正极。
3.感应电流方向的叛定:
(1).方法一:右手定则
(2).方法二:楞次定律:(理解四种阻碍)
①阻碍原磁通量的变化(增反减同)
②阻碍导体间的相对运动(来拒去留)
③阻碍原电流的变化(增反减同)
④面积有扩大与缩小的趋势(增缩减扩)
4.感应电动势大小的计算:
(1).法拉第电磁感应定律:
a.内容:
b.表达式:Ent
(2).计算感应电动势的公式x
①求平均值:Ent
②求瞬时值:E=BLV(导线切割类)
③法拉第电机:E12BL2
④闭合电路殴姆定律:EI感(Rr)
5.感应电流的计算:x平均电流:IERr(Rr)t瞬时电流:IERrBLVRr
6.安培力计算:
(1)平均值:
FxBIxLBLBLq(Rr)tt
(2).瞬时值:FBILB2L2VRr
7.通过的电荷量:qItRr注意:求电荷量只能用平均值,而不能用瞬时值。
8.互感:由于线圈A中电流的变化,它产生的磁通量发生变化,磁通量的变化在线圈B中激发了感应电动势。这种现象叫互感。
9.自感现象:
(1)定义:是指由于导体本身的电流发生变化而产生的电磁感应现象。
(2)决定因素:线圈越长,单位长度上的匝数越多,截面积越大,它的自感系数就越大。另外,有铁心的线圈的自感系数比没有铁心时要大得多。
(3)类型:通电自感和断电自感
(4)单位:亨利(H)、毫亨(mH),微亨(H)。
10.涡流及其应用
(1)定义:变压器在工作时,除了在原、副线圈产生感应电动势外,变化的磁通量也会在铁芯中产生感应电流。一般来说,只要空间有变化的磁通量,其中的导体就会产生感应电流,我们把这种感应电流叫做涡流
(2)应用:
a.新型炉灶电磁炉。
b.金属探测器:飞机场、火车站安全检查、扫雷、探矿。
第二章交变电流
一.正弦交变电流
1.两个特殊的位置
a.中性面位置:磁通量ф最大,磁通量的变化率为零,即感应电动势零。
b.垂直中性面位置磁通量ф为零,磁通量的变化率最大,即感应电动势最大。
2.正弦交变电流的表达式:
a.从中性面位置记时:
瞬时电动势:e=Emsinωt
瞬时电流:iImsintb.从垂直中性面位置记时
瞬时电动势:e=Emcosωt
瞬时电流:iImcost
3.正弦交变电流的四值:
a.最大值:Em=nBSω=nΦmω
b.瞬时值:
①中性面位置记时:e=Emsinωt
②垂直中性面位置记时:e=Emcosωtx
c.平均值:Entd.有效值:根据电流的`热效应规定。注意:
⑴只有正弦交变电流的有效值才一定是最大值的22倍。
a.动势有效值:m20.707m
b,电压有效值:Uum20.707Um
c.电流有效值:IIm20.707Im。
(2)通常所说的交变电流的电流、电压;交流电表的读数;交流电器的额定电压、额定电流;保险丝的熔断电流等都指有效值。(电容器的耐压值是交流的最大值。)
(3)生活中用的市电电压为220V,其最大值为Um=2202V=311V,频率为50HZ,所以其电压瞬时值的表达式为u=311sin314tV。
4、表征交流电的物理量:
(1)瞬时值、最大值和有效值:
(2)周期、频率
a.周期:交流电完成一次周期性变化所需的时间叫周期。以T表示,单位是秒。
b.频率:交流电在1秒内完成周期性变化的次数叫频率。以f表示,单位是Hz。
c.二者关系:周期和频率互为倒数,即T1f。
d.我国市电频率为50Hz,周期为0.02s5.交流电的图象:emsint图象如图53所示。emcost图象如图54所示。
二.变压器
1.理想变压器:
2.原理:互感
3.类型:
⑴升压变器:副线圈用细线绕
⑵降压变器:副线圈用粗线绕
⑶1:1隔离变压器:两边一样
4.基本公式:
⑴电压:(原决定副)U1Un1正比
2n2(2)电流:(副决定原)
一个副线圈:I1n2In反比21多个副线圈:U1I1=U2I2+U3I3
(3)功率:(输出决定输入)P出=P入
5.互感器
⑴电压互感器:降压变压器、并联⑵电流互感器:升压变压器、火线串联
三.远距离输电
1.高压输电的原因:
在输送的电功率和送电导线电阻一定的条件下,提高送电电压,减小送电电流强度可以达到减少线路上电能损失的目的。
2.远距离输电的结构图:
表示电容对交变电流的阻碍作用
(2)特点:
“通交流,隔直流”、“通高频,阻
D1r
低频”。
I1D2I1IrI2I2五.传感器的及其工作原理Ⅰ
1.定义:~n1n1n2n2
(1)功率之间的关系是:
a.P1=P1
b.P2=P2
c.P1=Pr+P2;
(2)电压之间的关系是:
a.U1Un1
1n1b.U2Un22n2c.U1UrU2
(3)电流之间的关系是:
a.I1nI11n1b.I2In22n
2c.I1IrI23.输电电流I的计算式:
"IP输Up1U"
出14.损失功率、损失电压的计算:
(1)Pr=Ir2r,
(2)Ur=Irr,
四.感抗和容抗(统称电抗)
1.感抗:
(1)意义:表示电感对交变电流的阻碍作用
(2)特点:“通直流,阻交流”、“通低频,阻高频”。
2.容抗:
(1)意义:有一些元件它能够感受诸如力、温度、光、声、化学成分等非电学量,并能把它们按照一定的规律转换为电压、电流等电学量,或转换为电路的通断。我们把这种元件叫做传感器。
2.优点是:把非电学量转换为电学量以后,就可以很方便地进行测量、传输、处理和控制了。
3.应用:
(1).几种特殊的电阻
a.光敏电阻:光照越强,光敏电阻阻值越小。
b热敏电阻:阻值随温度的升高而减小,且阻值随温度变化非常明显。
c.金属导体的电阻:随温度的升高而增大
d.霍尔元件:是将电磁感应这个磁学量转化为电压这个电学量的元件。
(2).传感器应用:
a.力传感器的应用电子秤
b.声传感器的应用话筒
c.温度传感器的应用电熨斗、电饭锅、测温仪
d.光传感器的应用鼠标器、火灾报警器
(3).传感器的应用实例:
a.光控开关
b.温度报警器
高中物理知识点总结11
怎样判断系统动量是否守衡?
动量守衡条件是系统不受外力,或合外力为零。一般研究问题,如果相互作用的内力比外力大很多,则可认为系统动量守衡;根据力的独立作用原理,如果在某方向上合外力为零,则在该方向上动量守衡。
注意守衡条件对内力的性质没有任何限制,可以是电场力、磁场力、核力等等。对系统状态没有任何限制,可以是微观、高速系统,也可以是宏观、低速系统。而力的作用过程可以是连续的作用,可以是间断的作用,如二人在光滑平面上的抛接球过程。综上有:
物体运动状态是否变化取决于--物体所受的合外力。
物体运动状态变化得快慢取决于--物体所受到的合外力和质量大小。物体到底做什么形式的运动取决于--物体所受到的合外力和初始状态。物体运动状态变化了多少取决于--
(1)力的大小和方向;
(2)力作用时间的长短。实验表明只要力与其作用时间的乘积一定,它引起同一个物体的速度变化相同,力与力作用时间的乘积,可以决定和量度力的某种作用效果--冲量。系统的内力改变了系统内物体的动量,但系统外力才是改变系统总动量的原因。
(三)能量和能量守恒
知识结构
功是一个过程量,与力在空间的作用过程相关。恒力功的计算公式与物体运动过程无关;重力功、弹力功与路径无关。功是一个标量,但有正负之分。
2.功率P:功率是表征力做功快慢的物理量、是标量:P=W/t 。若做功快慢程度不同,上式为平均功率。注意恒力的功率不一定恒定,如初速为零的匀加速运动,第一秒、第二秒、第三秒内合力的平均功率之比为1:3:5。已知功率可以求力在一段时间内所做的功W=Pt,这时可能是变力再做功。
上式常常用于分析解决机车牵引功率问题,常设有以下两种约束条件:
1)发动机功率一定:牵引力与速度成反比,只要速度改变,牵引力F=P/v将改变,这时的'运动一定是变加速运动。
2)机车以恒力启动:牵引力F恒定,由P=Fv可知,若车做匀加速运动,则功率P将增加,这种过程直到P达到机车的额定功率为止(注意不是达到最大速度为止)。
3.能:自然界有多种运动形式,与不同运动形式相应的存在不同形式的能量:机械运动--机械能;热运动--内能;电磁运动--电磁能;化学运动--化学能;生物运动--生物能;原子及原子核运动--原子能、核能。
动能:物体由于有机械运动速度而具有的能量Ek=mv2/2
能,包括动能和势能,都是标量。都是状态量,如动能由速度决定,重力势能由高度决定,弹性势能由形变状态决定。都具有相对性,物体速度相对于不同的参照物有不同的结果,相应的动能相对于不同的参照物有不同的动能。势能相对于不同的零势能参考面有不同的结果,势能有可能取负值,它意味着此时物体的势能比零势能低。
4.动能定理:研究对象:质点,数学表达公式:W=mv2/2-mv02/2。公式中W为质点受到的所有的作用力在所研究的过程中做的总功,它可以是恒力功,可以是变力功,可以是分阶段由不同的力做功累积(代数和)而得到的结果。动能定理对力的性质没有任何限制,
可以是重力、弹力、摩擦力、也可以是电场力、磁场力或其它力。等式右边为所研究的过程(初、末状态)中质点的动能的变化。动能定理表明,力对物体所做的总功,是物体动能变化的原因,力对物体所做的总功量度了物体动能的变化大小。
5.机械能守恒定律:在只有重力或弹力做功的情况下,物体的动能和势能发生相互转化,但机械能的总量保持不变。机械能守恒定律的研究对象是系统,一般简化为物体;守恒是指系统在满足守恒条件下,机械能--动能和势能之和,在状态变化过程中总保持不变。怎样判断机械能是否守衡?
(1)根据守恒条件:是否只有重力或弹力做功
(2)考察状态:比较、确定不同状态的机械能,看它们是否相同
(3)考察系统是否发生机械能与其它形式的能量的转化
高中物理知识点总结12
(1)定义:电势相等的点构成的面。
(2)特点:
等势面上各点电势相等,在等势面上移动电荷,电场力不做功。
等势面与电场线垂直
两等势面不相交
等势面的密集程度表示场强的大小:疏弱密强。
画等势面时,相邻等势面间的`电势差相等。
(3)判断电场线上两点间的电势差的大小:靠近场源(场强大)的两间的电势差大于远离场源(场强小)相等距离两点间的电势差。
高中物理知识点总结13
一、三种产生电荷的方式:
1、摩擦起电:
(1)正点荷:用绸子摩擦过的玻璃棒所带电荷;
(2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;
(3)实质:电子从一物体转移到另一物体;
2、接触起电:
(1)实质:电荷从一物体移到另一物体;
(2)两个完全相同的物体相互接触后电荷平分;
(3)电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和;
3、感应起电:把电荷移近不带电的导体,可以使导体带电;
(1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;
(2)实质:使导体的电荷从一部分移到另一部分;
(3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷;
4、电荷的基本性质:能吸引轻小物体;
5、电荷守恒定律:电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。
6、元电荷:一个电子所带的电荷叫元电荷,用e表示。
7、e=1.6×10—19c;
8、一个质子所带电荷亦等于元电荷;
9、任何带电物体所带电荷都是元电荷的整数倍;
二、库仑定律:真空中两个静止点电荷间的相互作用力,跟它们所带电荷量的乘积成正比,跟它们之间距离的二次方成反比,作用力的方向在它们的连线上。电荷间的这种力叫库仑力.
1、计算公式:F=kQ1Q2/r2(k=9.0×109N。m2/kg2)
2、库仑定律只适用于点电荷(电荷的体积可以忽略不计)
3、库仑力不是万有引力;
三、电场:电场是使点电荷之间产生静电力的一种物质。
1、只要有电荷存在,在电荷周围就一定存在电场;
2、电场的基本性质:电场对放入其中的电荷(静止、运动)有力的作用;这种力叫电场力;
3、电场、磁场、重力场都是一种物质
四、电场强度:放入电场中某点的电荷所受电场力F跟它的电荷量Q的比值叫该点的电场强度;
1、定义式:E=F/q;E是电场强度;F是电场力;q是试探电荷;
2、电场强度是矢量,电场中某一点的场强方向就是放在该点的正电荷所受电场力的方向(与负电荷所受电场力的方向相反)
3、该公式适用于一切电场;
4、点电荷的电场强度公式:E=kQ/r2
五、电场的叠加:在空间若有几个点电荷同时存在,则空间某点的电场强度,为这几个点电荷在该点的电场强度的矢量和;解题方法:分别作出表示这几个点电荷在该点场强的有向线段,用平行四边形定则求出合场强;
六、电场线:电场线是人们为了形象的描述电场特性而人为假设的线。
1、电场线不是客观存在的线;
2、电场线的形状:电场线起于正电荷终于负电荷;G:用锯木屑观测电场线。DAT
(1)只有一个正电荷:电场线起于正电荷终于无穷远;
(2)只有一个负电荷:起于无穷远,终于负电荷;
(3)既有正电荷又有负电荷:起于正电荷终于负电荷;
3、电场线的作用:
1)表示电场的强弱:电场线密则电场强(电场强度大);电场线疏则电场弱电场强度小);
2)表示电场强度的方向:电场线上某点的切线方向就是该点的场强方向;
4、电场线的特点:
1)电场线不是封闭曲线;
2)同一电场中的电场线不向交;
七、匀强电场:电场强度的大小、方向处处相同的电场;匀强电场的电场线平行、且分布均匀;
1、匀强电场的电场线是一簇等间距的平行线;
2、平行板电容器间的电是匀强电场;
八、电势差:电荷在电场中由一点移到另一点时,电场力所作的功WAB与电荷量q的比值叫电势差,又名电压。
1、定义式:UAB=WAB/q;
2、电场力作的`功与路径无关;
3、电势差又命电压,国际单位是伏特;
九、电场中某点的电势,等于单位正电荷由该点移到参考点(零势点)时电场力作的功;
1、电势具有相对性,和零势面的选择有关;
2、电势是标量,单位是伏特V;
3、电势差和电势间的关系:UAB=φA—φB;
4、电势沿电场线的方向降低时,电场力要作功,则两点电势差不为零,就不是等势面;
4、相同电荷在同一等势面的任意位置,电势能相同;原因:电荷从一电移到另一点时,电场力不作功,所以电势能不变;
5、电场线总是由电势高的地方指向电势低的地方;
6、等势面的画法:相另等势面间的距离相等;
十、电场强度和电势差间的关系:在匀强电场中,沿场强方向的两点间的电势差等于场强与这两点的距离的乘积。
1、数学表达式:U=Ed;
2、该公式的使适用条件是,仅仅适用于匀强电场;
3、d是两等势面间的垂直距离;
十一、电容器:储存电荷(电场能)的装置。
1、结构:由两个彼此绝缘的金属导体组成;
2、最常见的电容器:平行板电容器;
十二、电容:电容器所带电荷量Q与两电容器量极板间电势差U的比值;用“C”来表示。
1、定义式:C=Q/U;
2、电容是表示电容器储存电荷本领强弱的物理量;
3、国际单位:法拉简称:法,用F表示
4、电容器的电容是电容器的属性,与Q、U无关;
十三、平行板电容器的决定式:C=εs/4πkd;(其中d为两极板间的垂直距离,又称板间距;k是静电力常数,k=9.0×109N。m2/c2;ε是电介质的介电常数,空气的介电常数最小;s表示两极板间的正对面积;)
1、电容器的两极板与电源相连时,两板间的电势差不变,等于电源的电压;
2、当电容器未与电路相连通时电容器两板所带电荷量不变;
十四、带电粒子的加速:
1、条件:带电粒子运动方向和场强方向垂直,忽略重力;
2、原理:动能定理:电场力做的功等于动能的变化:W=Uq=1/2mvt2—1/2mv02;
3、推论:当初速度为零时,Uq=1/2mvt2;
4、使带电粒子速度变大的电场又名加速电场;
高中物理知识点总结14
匀变速直线运动定义
匀变速直线运动是高中物理最基本,同时也是考察做多的一种运动形式。
物体在一条直线上运动,如果在相等的时间内速度的变化量相等,这种运动就叫做匀变速直线运动。
也可定义为:沿着一条直线,且加速度不变的运动,叫做匀变速直线运动。
匀变速直线运动图像
在匀变速直线运动中,如果物体的速度随着时间均匀增加,这个运动叫做匀加速直线运动;对应着加速度与速度方向相同。
如果物体的速度随着时间均匀减小,这个运动叫做匀减速直线运动;对应着加速度与速度方向相反。
做匀变速直线运动的前提条件
物体到底在满足什么前提下才能做匀变速直线运动呢?
这个前提条件,主要是对比曲线运动的前提条件来说的。物体作匀变速直线运动须同时符合下述两条:
1,受恒外力作用(保证加速度方向大小不变);
2,合外力与初速度在同一直线上(保证物体运动方向不变)。
当合外力的方向与物体运动方向一致时,为匀加速直线运动;当合外力方向与物体运动方向相反时,为匀减速直线运动。
匀变速直线运动的公式总结
匀变速直线运动有四个最基本公式,分别如下:
(1)匀变速直线运动速度与时间的关系公式
vt=v0+at
(2)匀变速直线运动位移与时间的关系公式
x=v0t+1/2at2
(3)匀变速直线运动位移与速度的关系公式
vt2-v02=2ax
(4)位移与平均速度的关系公式
x=(vt+v0)·t/2
匀变速直线运动公式使用与选择
一般来说,题目中含有t的时候,优先考虑的是第一个、第二个方程。
题目没有时间t时,优先考虑的是第三个方程(位移和速度关系)。
从上述的四个公式中不难看出,研究匀变速直线运动主要是研究五个物理量:s、t、a、v0、vt,这五个物理量中只有三个是独立的,可以任意选定。
只要其中三个物理量确定之后,另外两个就确定了。
每个公式中只有其中的四个物理量,当已知某三个而要求另一个时,往往选定一个公式就可以了。
如果两个匀变速直线运动有三个物理量对应相等,那么另外的两个物理量也一定对应相等。例如:在忽略空气阻力的条件下,竖直上抛物体的上升、回落过程对照:最小速度、加速度大小、位移大小相同,因此经历时间和速度大小一定相同。
以上五个物理量中,除时间t外,s、v0、vt、a这四个量都是矢量。
一般做题的过程中选定v0的方向为正方向,以t=0时刻的位移为零,这时s、vt和a的正负就都有了确定的物理意义。当然,这是王尚个人的意见,有的老师喜欢规定a的方向为正方向,这也是可以的。正方向的规定并不严格,但是我们在运用上述四个公式的时候,必须带入矢量进行运算,否则就很容易导致计算错误。
匀变速直线运动中几个常用的推论
在打点计时器及其纸带数据处理的实验中,我们用公式Δs=aT2来求加速度。
这说明任意相邻相等时间内的位移之差相等。这个结论可以推广位:sm-sn=(m-n)aT2;
某段时间的中间时刻的即时速度等于该段时间内的平均速度,这个问题也总是出现在打点计时器的实验题中,大家要注意。
提醒大家的是,某段位移的中间位置的即时速度不小于该段位移内的平均速度。
匀变速直线运动特例:自由落体运动
自由落体运动是一种常见且常考的运动模式,是一种特殊的'匀变速直线运动。这种运动的特点是初速度为零,加速度为g的运动模式。
地球表面附近的上空可看作是恒定的重力场.如不考虑大气阻力,在该区域内的自由落体运动是匀加速直线运动.其加速度恒等于重力加速度g。
虽然地球的引力和物体到地球中心距离的平方成反比,但地球的半径远大于自由落体所经过的路程,所以引力在地面附近可看作是不变的,自由落体的加速度即是一个不变的常量.
自由落体运动,是初速为零的匀加速直线运动。
初速度为零的匀变速直线运动规律
前1秒、前2秒、前3秒……内的位移之比为1∶4∶9∶……
第1个t内、第2个t内、……、第n个t内(相同时间内)的位移之比1:3:5:……:(2n-1)。
通过第1个s、第2个s、第3个s、……、第n个s(通过连续相等的位移)所需时间之比t1:t2:……:tn=1:√2:√3……:√n。
对末速为零的匀变速直线运动,同样也可以类比运用这些规律。
高中物理知识点总结15
01质点的运动(1)------直线运动
1)匀变速直线运动
1.平均速度V平=s/t(定义式)
2.中间时刻速度Vt/2=V平=(Vt+Vo)/2
3.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2
4.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a0;反向则a0}
2)自由落体运动
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算)
4.推论Vt2=2gh
02质点的运动:
1)平抛运动
1.水平方向速度:Vx=Vo
2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot
4.竖直方向位移:y=gt2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平夹角:tg=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向与水平夹角:tg=y/x=gt/2Vo
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
2)匀速圆周运动
1.线速度V=s/t=2r/T 2.角速度=/t=2/T=2f
3.向心加速度a=V2/r=2r=(2/T)2r
4.向心力F心=mV2/r=m2r=mr(2/T)2=mv=F合
5.周期与频率:T=1/f 6.角速度与线速度的关系:V=r
7.角速度与转速的关系=2n(此处频率与转速意义相同)
8.主要物理量及单位:弧长(s):米(m);角度():弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度():rad/s;向心加速度:m/s2。
3)万有引力
1.开普勒第三定律:T2/R3=K(=42/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2 (G=6.6710-11Nm2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;=(GM/r3)1/2;T=2(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m42(r地+h)/T2{h36000km,h:距地球表面的高度,r地:地球的半径}
03力:
1.重力G=mg (方向竖直向下,g=9.8m/s210m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3.滑动摩擦力F=FN {与物体相对运动方向相反,:摩擦因数,FN:正压力(N)}
4.静摩擦力0f静fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)
5.万有引力F=Gm1m2/r2 (G=6.6710-11Nm2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2 (k=9.0109Nm2/C2,方向在它们的连线上)
7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的'电场力与场强方向相同)
8.安培力F=BILsin (为B与L的夹角,当LB时:F=BIL,B//L时:F=0)
9.洛仑兹力f=qVBsin (为B与V的夹角,当VB时:f=qVB,V//B时:f=0)
【高中物理知识点总结】相关文章:
高中物理知识点总结04-02
高中物理的知识点总结02-07
高中物理知识点总结07-24
高中物理知识点的总结06-13
高中物理知识点总结【经典】08-05
高中物理知识点总结04-19
高中物理知识点总结优秀05-25
高中物理知识点总结[合集]07-21
高中物理知识点总结(优选)07-31
高中物理知识点总结[必备]07-19