高中物理知识点总结【经典】
总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它可以帮助我们有寻找学习和工作中的规律,因此好好准备一份总结吧。那么总结有什么格式呢?下面是小编收集整理的高中物理知识点总结,欢迎阅读,希望大家能够喜欢。
高中物理知识点总结1
一.简谐运动
1、机械振动:
物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。机械振动产生的条件是:(1)回复力不为零。(2)阻力很小。使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。
2、简谐振动:
在机械振动中最简单的一种理想化的振动。对简谐振动可以从两个方面进行定义或理解:(1)物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。(2)物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动,在高中物理教材中是以弹簧振子和单摆这两个特例来认识和掌握简谐振动规律的。
3、描述振动的物理量
描述振动的物理量,研究振动除了要用到位移、速度、加速度、动能、势能等物理量以外,为适应振动特点还要引入一些新的物理量。
(1)位移x:由平衡位置指向振动质点所在位置的有向线段叫做位移。位移是矢量,其最大值等于振幅。(2)振幅A:做机械振动的物体离开平衡位置的最大距离叫做振幅,振幅是标量,表示振动的强弱。振幅越大表示振动的机械能越大,做简揩振动物体的振幅大小不影响简揩振动的周期和频率。
(3)周期T:振动物体完成一次余振动所经历的时间叫做周期。所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。(4)频率f:振动物体单位时间内完成全振动的次数。
(5)角频率:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。周期、频率、角频率的关系是:。
(6)相位:表示振动步调的物理量。现行中学教材中只要求知道同相和反相两种情况。
4、研究简谐振动规律的几个思路:
(1)用动力学方法研究,受力特征:回复力F=-Kx;加速度,简谐振动是一种变加速运动。在平衡位置时速度最大,加速度为零;在最大位移处,速度为零,加速度最大。
(2)用运动学方法研究:简谐振动的速度、加速度、位移都随时间作正弦或余弦规律的变化,这种用正弦或余弦表示的公式法在高中阶段不要求学生掌握。
(3)用图象法研究:熟练掌握用位移时间图象来研究简谐振动有关特征是本章学习的重点之一。(4)从能量角度进行研究:简谐振动过程,系统动能和势能相互转化,总机械能守恒,振动能量和振幅有关。
5、简谐运动的表达式
振幅A,周期T,相位,初相
6、简谐运动图象描述振动的物理量
1.直接描述量:
①振幅A;②周期T;③任意时刻的位移t。2.间接描述量:
③x—t图线上一点的切线的斜率等于V。3.从振动图象中的x分析有关物理量(v,a,F)
简谐运动的特点是周期性。在回复力的作用下,物体的运动在空间上有往复性,即在平衡位置附近做往复的变加速(或变减速)运动;在时间上有周期性,即每经过一定时间,运动就要重复一次。我们能否利用振动图象来判断质点x,F,v,a的变化,它们变化的周期虽相等,但变化步调不同,只有真正理解振动图象的物理意义,才能进一步判断质点的运动情况。
小结:1。简谐运动的图象是正弦或余弦曲线,与运动轨迹不同。2.简谐运动图象反应了物体位移随时间变化的关系。
3.根据简谐运动图象可以知道物体的振幅、周期、任一时刻的位移。
7、单摆
1单摆周期公式
上述公式是高考要考查的重点内容之一。对周期公式的理解和应用注意以下几个问题:①简谐振动物体的周期和频率是由振动系统本身的条件决定的。②单摆周期公式中的L是指摆动圆弧的圆心到摆球重心的距离,一般也叫等效摆长。
例如图1中,三根等长的绳L1、L2、L3共同系住一个密度均匀的小球m,球直径为d,L2、L3与天花板的夹角<30。若摆球在纸面内作小角度的左右摆动,则摆的圆弧的圆心在O1外,故等效摆长为,周期T1=2;若摆球做垂直纸面的小角度摆动,叫摆动圆弧的圆心在O处,故等效摆长为,周期T2=。单摆周期公式中的g,由单摆所在的空间位置决定,还由单摆系统的运动状态决定。所以g也叫等效重力加速度。由可知,地球表面不同位置、不同高度,不同星球表面g值都不相同,因此应求出单摆所在地的等效g值代入公式,即g不一定等于9。8m/s2。单摆系统运动状态不同g值也不相同。例如单摆在向上加速发射的航天飞机内,设加速度为a,此时摆球处于超重状态,沿圆弧切线的回复力变大,摆球质量不变,则重力加速度等效值g=g+a。再比如在轨道上运行的航天飞机内的单摆、摆球完全失重,回复力为零,则重力加速度等效值g=0,周期无穷大,即单摆不摆动了。g还由单摆所处的物理环境决定。如带小电球做成的单摆在竖直方向的匀强电场中,回复力应是重力和竖直的电场合力在圆弧切向方向的分力,所以也有-g的问题。一般情况下g值等于摆球静止在平衡位置时,摆线张力与摆球质量的比值。8、受迫振动和共振Ⅰ
物体在周期性外力作用下的振动叫受迫振动。受迫振动的规律是:物体做受迫振动的频率等于策动力的频率,而跟物体固有频率无关。当策动力的频率跟物体固有频率相等时,受迫振动的振幅最大,这种现象叫共振。共振是受迫振动的一种特殊情况。9、机械波横波和纵波横波的图象Ⅰ
机械波:机械振动在介质中的传播过程叫机械波,机械波产生的条件有两个:一是要有做机械振动的物体作为波源,二是要有能够传播机械振动的介质。横波和纵波:
质点的振动方向与波的.传播方向垂直的叫横波。质点的振动方向与波的传播方向在同一直线上的叫纵波。气体、液体、固体都能传播纵波,但气体和液体不能传播横波,声波在空气中是纵波,声波的频率从20到2万赫兹。
第二章、机械波
1、机械波的特点:
(1)每一质点都以它的平衡位置为中心做简振振动;后一质点的振动总是落后于带动它的前一质点的振动。(2)波只是传播运动形式(振动)和振动能量,介质并不随波迁移。横波的图象
用横坐标x表示在波的传播方向上各质点的平衡位置,纵坐标y表示某一时刻各质点偏离平衡位置的位移。简谐波的图象是正弦曲线,也叫正弦波
简谐波的波形曲线与质点的振动图象都是正弦曲线,但他们的意义是不同的。波形曲线表示介质中的“各个
2、波长、波速和频率(周期)的关系
描述机械波的物理量
(1)波长:两个相邻的、在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长。振动在一个周期内在介质中传播的距离等于波长。
(2)频率f:波的频率由波源决定,在任何介质中频率保持不变。(3)波速v:单位时间内振动向外传播的距离。波速的大小由介质决定。波速与波长和频率的关系:,
3、波的反射和折射波的干涉和衍射Ⅰ
4、惠更斯原理:介质中任一波面上的各点,都可以看作发射子波的波源,而后任意时刻,这些子波在波前进方向的包络面便是新的波面。
5、根据惠更斯原理,只要知道某一时刻的波阵面,就可以确定下一时刻的波阵面。、波的干涉和衍射相差不多。
衍射:波绕过障碍物或小孔继续传播的现象。产生显著衍射的条件是障碍物或孔的尺寸比波长小或与波长干涉:频率相同的两列波叠加,使某些区域的振动加强,使某些区域振动减弱,并且振动加强和振动减弱区域相互间隔的现象。产生稳定干涉现象的条件是:两列波的频率相同,相差恒定。
稳定的干涉现象中,振动加强区和减弱区的空间位置是不变的,加强区的振幅等于两列波振幅之和,减弱区振幅等于两列波振幅之差。判断加强与减弱区域的方法一般有两种:一是画峰谷波形图,峰峰或谷谷相遇增强,峰谷相遇减弱。二是相干波源振动相同时,某点到二波源程波差是波长整数倍时振动增强,是半波长奇数倍时振动减弱。干涉和衍射是波所特有的现象。
6、多普勒效应
1。多普勒效应:由于波源和观察者之间有相对运动,使观察者感到频率变化的现象叫做多普勒效应。他是奥地利物理学家多普勒在1842年发现的。
2。多普勒效应的成因:声源完成一次全振动,向外发出一个波长的波,频率表示单位时间内完成的全振动的次数,因此波源的频率等于单位时间内波源发出的完全波的个数,而观察者听到的声音的音调,是由观察者接受到的频率,即单位时间接收到的完全波的个数决定的。
3。多普勒效应是波动过程共有的特征,不仅机械波,电磁波和光波也会发生多普勒效应。
4。多普勒效应的应用:①现代医学上使用的胎心检测器、血流测定仪等有许多都是根据这种原理制成。②根据汽笛声判断火车的运动方向和快慢,以炮弹飞行的尖叫声判断炮弹的飞行方向等。③红移现象:在20世纪初,科学家们发现许多星系的谱线有“红衣现象”,所谓“红衣现象”,就是整个光谱结构向光谱红色的一端偏移,这种现象可以用多普勒效应加以解释:由于星系远离我们运动,接收到的星光的频率变小,谱线就向频率变小(即波长变大)的红端移动。科学家从红移的大小还可以算出这种远离运动的速度。这种现象,是证明宇宙在膨胀的一个有力证据。7、波的反射
1。波遇到障碍物会返回来继续传播,这种现象叫做波的反射.
2。反射定律:入射线、法线、反射线在同一平面内,入射线与反射线分居法线两侧,反射角等于入射角。入射角(i)和反射角(i’):入射波的波线与平面法线的夹角i叫做入射角.反射波的波线与平面法线的夹角i’叫做反射角.
反射波的波长、频率、波速都跟入射波相同.波遇到两种介质界面时,总存在反射
8、波的折射
1波的折射:波从一种介质进入另一种介质时,波的传播方向发生了改变的现象叫做波的折射
折射规律:
(1)。折射角(r):折射波的波线与两介质界面法线的夹角r叫做折射角.
(2)。折射定律:入射线、法线、折射线在同一平面内,入射线与折射线分居法线两侧.入射角的正弦跟折射角的正弦之比等于波在第一种介质中的速度跟波在第二种介质中的速度之比:当入射速度大于折射速度时,折射角折向法线。当入射速度小于折射速度时,折射角折离法线。
当垂直界面入射时,传播方向不改变,属折射中的特例.在波的折射中,波的频率不改变,波速和波长都发生改变.
9、光的折射定律折射率
光的折射定律,也叫斯涅耳定律:入射角的正弦跟折射角的正弦成正比.如果用n来表示这个比例常数,就有
折射率:光从一种介质射入另一种介质时,虽然入射角的正弦跟折射角的正弦之比为一常数n,但是对不同的介质来说,这个常数n是不同的.这个常数n跟介质有关系,是一个反映介质的光学性质的物理量,我们把它叫做介质的折射率.
i是光线在真空中与法线之间的夹角.
r是光线在介质中与法线之间的夹角.光从真空射入某种介质时的折射率,叫做该种介质的绝对折射率,也简称为某种介质的折射率
第三章、电磁波电磁波的传播一、麦克斯韦电磁场理论
1、电磁场理论的核心之一:变化的磁场产生电场
在变化的磁场中所产生的电场的电场线是闭合的(涡旋电场)◎理解:(1)均匀变化的磁场产生稳定电场(2)非均匀变化的磁场产生变化电场2、电磁场理论的核心之二:变化的电场产生磁场
麦克斯韦假设:变化的电场就像导线中的电流一样,会在空间产生磁场,即变化的电场产生磁场◎理解:(1)均匀变化的电场产生稳定磁场(2)非均匀变化的电场产生变化磁场〖规律总结〗
1、麦克斯韦电磁场理论的理解:恒定的电场不产生磁场恒定的磁场不产生电场
均匀变化的电场在周围空间产生恒定的磁场均匀变化的磁场在周围空间产生恒定的电场振荡电场产生同频率的振荡磁场振荡磁场产生同频率的振荡电场2、电场和磁场的变化关系
二、电磁波
1、电磁场:如果在空间某区域中有周期性变化的电场,那么这个变化的电场就在它周围空间产生周期性变化的磁场;这个变化的磁场又在它周围空间产生新的周期性变化的电场,变化的电场和变化的磁场是相互联系着的,形成不可分割的统一体,这就是电磁场这个过程可以用下图表达。2、电磁波:
电磁场由发生区域向远处的传播就是电磁波。3、电磁波的特点:
(1)电磁波是横波,电场强度E和磁感应强度B按正弦规律变化,二者相互垂直,均与波的传播方向垂直(2)电磁波可以在真空中传播,速度和光速相同。v=λf(3)电磁波具有波的特性
三、赫兹的电火花
赫兹观察到了电磁波的反射,折射,干涉,偏振和衍射等现象。,他还测量出电磁波和光有相同的速度。这样赫兹证实了麦克斯韦关于光的电磁理论,赫兹在人类历史上首先捕捉到了电磁波。
第四章、电磁振荡电磁波的发射和接收1、LC回路振荡电流的产生
先给电容器充电,把能以电场能的形式储存在电容器中。
(1)闭合电路,电容器C通过电感线圈L开始放电。由于线圈中产生的自感电动势的阻碍作用。放电开始瞬时电路中电流为零,磁场能为零,极板上电荷量最大。随后,电路中电流加大,磁场能加大,电场能减少,直到电容器C两端电压为零。放电结束,电流达到最大、磁场能最多。
(2)由于电感线圈L中自感电动势的阻碍作用电流不会立即消失,保持原来电流方向,对电容器反方向充电,磁场能减少,电场能增多。充电流由大到小,充电结束时,电流为零。
接着电容器又开始放电,重复(1)、(2)过程,但电流方向与(1)时的电流方向相反。电磁波的发射和接收
有效的向外发射电磁波的条件:
(1)要有足够高的振荡频率,因为频率越高,发射电磁波的本领越大。
(2)振荡电路的电场和磁场必须分散到尽可能大的空间,才有可能有效的将电磁场的能量传播出去。采用什么手段可以有效的向外界发射电磁波?改造振荡电路由闭合电路成开放电路
2、电磁波的接收条件
①电谐振:当接收电路的固有频率跟接收到的电磁波的频率相同时,接收电路中产生的振荡电流最强,这种现象叫做电谐振。
②调谐:使接收电路产生电谐振的过程。通过改变电容器电容来改变调谐电路的频率。③检波:从接收到的高频振荡中“检”出所携带的信号。.电磁波谱及其应用Ⅰ
3、光的电磁说
(1)麦克斯韦计算出电磁波传播速度与光速相同,说明光具有电磁本质(2)电磁波谱
电磁波谱无线电波红外线可见光紫外线X射线射线产生机理在振荡电路中,自由电子作周期性运动产生原子的外层电子受到激发产生的
原子的内层电子受到激发后产生的原子核受到激发后产生的
(3)光谱①观察光谱的仪器,分光镜②光谱的分类,产生和特征发射光谱连续光谱产生特征
由炽热的固体、液体和高压气体发光产生的由连续分布的,一切波长的光组成明线光谱由稀薄气体发光产生的由不连续的一些亮线组成
吸收光谱高温物体发出的白光,通过物质后某些波长的光被吸收而产生的在连续光谱的背景上,由一些不连续的暗线组成的光谱③光谱分析:
一种元素,在高温下发出一些特点波长的光,在低温下,也吸收这些波长的光,所以把明线光波中的亮线和吸收光谱中的暗线都称为该种元素的特征谱线,用来进行光谱分析。
4、电磁波的应用:
1、电视
简单地说:电视信号是电视台先把影像信号转变为可以发射的电信号,发射出去后被接收的电信号通过还原,被还原为光的图象重现荧光屏。电子束把一幅图象按照各点的明暗情况,逐点变为强弱不同的信号电流,通过天线把带有图象信号的电磁波发射出去。
2、雷达工作原理
利用发射与接收之间的时间差,计算出物体的距离。
3、手机
在待机状态下,手机不断的发射电磁波,与周围环境交换信息。手机在建立连接的过程中发射的电磁波特别强。电磁波与机械波的比较:
共同点:都能产生干涉和衍射现象;它们波动的频率都取决于波源的频率;在不同介质中传播,频率都不变.
不同点:机械波的传播一定需要介质,其波速与介质的性质有关,与波的频率无关.而电磁波本身就是一种物质,它可以在真空中传播,也可以在介质中传播.电磁波在真空中传播的速度均为3。0×108m/s,在介质中传播时,波速和波长不仅与介质性质有关,还与频率有关.不同电磁波产生的机理
无线电波是振荡电路中自由电子作周期性的运动产生的.红外线、可见光、紫外线是原子外层电子受激发产生的.伦琴射线是原子内层电子受激发产生的.γ射线是原子核受激发产生的.
频率(波长)不同的电磁波表现出作用不同.
红外线主要作用是热作用,可以利用红外线来加热物体和进行红外线遥感;紫外线主要作用是化学作用,可用来杀菌和消毒;
伦琴射线有较强的穿透本领,利用其穿透本领与物质的密度有关,进行对人体的透视和检查部件的缺陷;γ射线的穿透本领更大,在工业和医学等领域有广泛的应用,如探伤,测厚或用γ刀进行手术.
高中物理知识点总结2
1、大的物体不一定不能看成质点,小的物体不一定能看成质点。
2、在时间轴上n秒时指的是n秒末。第n秒指的是一段时间,是第n个1秒。第n秒末和第n+1秒初是同一时刻。
3、忽视位移的矢量性,只强调大小而忽视方向。
4、物体做直线运动时,位移的大小不一定等于路程。
5、位移也具有相对性,必须选一个参考系,选不同的参考系时,物体的位移可能不同。
6、打点计时器在纸带上应打出轻重合适的小圆点,如遇到打出的是短横线,应调整一下振针距复写纸的高度,使之增大一点。
7、使用计时器打点时,应先接通电源,待打点计时器稳定后,再释放纸带。
8、使用电火花打点计时器时,应注意把两条白纸带正确穿好,墨粉纸盘夹在两纸带间;使用电磁打点计时器时,应让纸带通过限位孔,压在复写纸下面。
9、"速度"一词是比较含糊的统称,在不同的语境中含义不同,一般指瞬时速率、平均速度、瞬时速度、平均速率四个概念中的一个,要学会根据上、下文辨明"速度"的含义。平常所说的"速度"多指瞬时速度,列式计算时常用的是平均速度和平均速率。
10、着重理解速度的矢量性。有的同学受初中所理解的速度概念的影响,很难接受速度的方向,其实速度的方向就是物体运动的方向,而初中所学的"速度"就是现在所学的平均速率。
11、平均速度不是速度的平均。
12、平均速率不是平均速度的大小。
13、物体的速度大,其加速度不一定大。
14、物体的速度为零时,其加速度不一定为零。
15、物体的速度变化大,其加速度不一定大。
16、加速度的正、负仅表示方向,不表示大小。
17、物体的加速度为负值,物体不一定做减速运动。
18、物体的加速度减小时,速度可能增大;加速度增大时,速度可能减小。
19、物体的速度大小不变时,加速度不一定为零。
20、物体的加速度方向不一定与速度方向相同,也不一定在同一直线上。
21、位移图象不是物体的运动轨迹。
22、解题前先搞清两坐标轴各代表什么物理量,不要把位移图象与速度图象混淆。
23、图象是曲线的不表示物体做曲线运动。
24、人们得出"重的物体下落快"的错误结论主要是由于空气阻力的影响。
25、严格地讲自由落体运动的物体只受重力作用,在空气阻力影响较小时,可忽略空气阻力的影响,近似视为自由落体运动。
26、自由落体实验实验记录自由落体轨迹时,对重物的要求是"质量大、体积小",只强调"质量大"或"体积小"都是不确切的。
27、自由落体运动中,加速度g是已知的,但有时题目中不点明这一点,我们解题时要充分利用这一隐含条件。
28、自由落体运动是无空气阻力的理想情况,实际物体的运动有时受空气阻力的影响过大,这时就不能忽略空气阻力了,如雨滴下落的最后阶段,阻力很大,不能视为自由落体运动。
29、自由落体加速度通常可取9.8m/s?或10m/s?,但并不是不变的,它随纬度和海拔高度的变化而变化。
30、四个重要比例式都是从自由落体运动开始时,即初速度v0=0是成立条件,如果v0≠0则这四个比例式不成立。
31、匀变速运动的各公式都是矢量式,列方程解题时要注意各物理量的方向。
32、常取初速度v0的方向为正方向,但这并不是一定的,也可取与v0相反的方向为正方向。
33、汽车刹车问题应先判断汽车何时停止运动,不要盲目套用匀减速直线运动公式求解。
34、找准追及问题的临界条件,如位移关系、速度相等等。
35、用速度图象解题时要注意图线相交的点是速度相等的点而不是相遇处。
36、产生弹力的条件之一是两物体相互接触,但相互接触的物体间不一定存在弹力。
37、某个物体受到弹力作用,不是由于这个物体的形变产生的,而是由于施加这个弹力的物体的形变产生的。
38、压力或支持力的方向总是垂直于接触面,与物体的重心位置无关。
39、胡克定律公式F=kx中的x是弹簧伸长或缩短的长度,不是弹簧的总长度,更不是弹簧原长。
40、弹簧弹力的大小等于它一端受力的大小,而不是两端受力之和,更不是两端受力之差。
41、杆的弹力方向不一定沿杆。
42、摩擦力的作用效果既可充当阻力,也可充当动力。
43、滑动摩擦力只以μ和N有关,与接触面的大小和物体的运动状态无关。
44、各种摩擦力的方向与物体的运动方向无关。
45、静摩擦力具有大小和方向的可变性,在分析有关静摩擦力的问题时容易出错。
46、最大静摩擦力与接触面和正压力有关,静摩擦力与压力无关。
47、画力的图示时要选择合适的标度。
48、实验中的两个细绳套不要太短。
49、检查弹簧测力计指针是否指零。
50、在同一次实验中,使橡皮条伸长时结点的位置一定要相同。
51、使用弹簧测力计拉细绳套时,要使弹簧测力计的弹簧与细绳套在同一直线上,弹簧与木板面平行,避免弹簧与弹簧测力计外壳、弹簧测力计限位卡之间有摩擦。
52、在同一次实验中,画力的图示时选定的标度要相同,并且要恰当使用标度,使力的图示稍大一些。
53、合力不一定大于分力,分力不一定小于合力。
54、三个力的合力最大值是三个力的数值之和,最小值不一定是三个力的数值之差,要先判断能否为零。
55、两个力合成一个力的结果是惟一的,一个力分解为两个力的情况不惟一,可以有多种分解方式。
56、一个力分解成的两个分力,与原来的这个力一定是同性质的,一定是同一个受力物体,如一个物体放在斜面上静止,其重力可分解为使物体下滑的`力和使物体压紧斜面的力,不能说成下滑力和物体对斜面的压力。
57、物体在粗糙斜面上向前运动,并不一定受到向前的力,认为物体向前运动会存在一种向前的"冲力"的说法是错误的。
58、所有认为惯性与运动状态有关的想法都是错误的,因为惯性只与物体质量有关。
59、惯性是物体的一种基本属性,不是一种力,物体所受的外力不能克服惯性。
60、物体受力为零时速度不一定为零,速度为零时受力不一定为零。
61、牛顿第二定律 F=ma中的F通常指物体所受的合外力,对应的加速度a就是合加速度,也就是各个独自产生的加速度的矢量和,当只研究某个力产生加速度时牛顿第二定律仍成立。
62、力与加速度的对应关系,无先后之分,力改变的同时加速度相应改变。
63、虽然由牛顿第二定律可以得出,当物体不受外力或所受合外力为零时,物体将做匀速直线运动或静止,但不能说牛顿第一定律是牛顿第二定律的特例,因为牛顿第一定律所揭示的物体具有保持原来运动状态的性质,即惯性,在牛顿第二定律中没有体现。
64、牛顿第二定律在力学中的应用广泛,但也不是"放之四海而皆准",也有局限性,对于微观的高速运动的物体不适用,只适用于低速运动的宏观物体。
65、用牛顿第二定律解决动力学的两类基本问题,关键在于正确地求出加速度a,计算合外力时要进行正确的受力分析,不要漏力或添力。
66、用正交分解法列方程时注意合力与分力不能重复计算。
67、注意F合=ma是矢量式,在应用时,要选择正方向,一般我们选择合外力的方向即加速度的方向为正方向。
68、超重并不是重力增加了,失重也不是失去了重力,超重、失重只是视重的变化,物体的实重没有改变。
69、判断超重、失重时不是看速度方向如何,而是看加速度方向向上还是向下。
70、有时加速度方向不在竖直方向上,但只要在竖直方向上有分量,物体也处于超、失重状态。
71、两个相关联的物体,其中一个处于超(失)重状态,整体对支持面的压力也会比重力大(小)。
72、国际单位制是单位制的一种,不要把单位制理解成国际单位制。
73、力的单位牛顿不是基本单位而是导出单位。
74、有些单位是常用单位而不是国际单位制单位,如:小时、斤等。
75、进行物理计算时常需要统一单位。
76、只要存在与速度方向不在同一直线上的合外力,物体就做曲线运动,与所受力是否为恒力无关。
77、做曲线运动的物体速度方向沿该点所在的轨迹的切线,而不是合外力沿轨迹的切线。请注意区别。
78、合运动是指物体相对地面的实际运动,不一定是人感觉到的运动。
79、两个直线运动的合运动不一定是直线运动,两个匀速直线运动的合运动一定是匀速直线运动。两个匀变速直线运动的合运动不一定是匀变速直线运动。
80、运动的合成与分解实际上就是描述运动的物理量的合成与分解,如速度、位移、加速度的合成与分解。
81、运动的分解并不是把运动分开,物体先参与一个运动,然后再参与另一运动,而只是为了研究的方便,从两个方向上分析物体的运动,分运动间具有等时性,不存在先后关系。
82、竖直上抛运动整体法分析时一定要注意方向问题,初速度方向向上,加速度方向向下,列方程时可以先假设一个正方向,再用正、负号表示各物理量的方向,尤其是位移的正、负,容易弄错,要特别注意。
83、竖直上抛运动的加速度不变,故其v-t图象的斜率不变,应为一条直线。
84、要注意题目描述中的隐蔽性,如"物体到达离抛出点5m处",不一定是由抛出点上升5m,有可能在下降阶段到达该处,也有可能在抛出点下方5m处。
85、平抛运动公式中的时间t是从抛出点开始计时的,否则公式不成立。
86、求平抛运动物体某段时间内的速度变化时要注意应该用矢量相减的方法。用平抛竖落仪研究平抛运动时结果是自由落体运动的小球与同时平抛的小球同时落地,说明平抛运动的竖直分运动是自由落体运动,但此实验不能说明平抛运动的水平分运动是匀速直线运动。
87、并不是水平速度越大斜抛物体的射程就越远,射程的大小由初速度和抛射角度两因素共同决定。
88、斜抛运动最高点的物体速度不等于零,而等于其水平分速度。
89、斜抛运动轨迹具有对称性,但弹道曲线不具有对称性。
90、在半径不确定的情况下,不能由角速度大小判断线速度大小,也不能由线速度大小判断角速度大小。
91、地球上的各点均绕地轴做匀速圆周运动,其周期及角速度均相等,各点做匀速圆周运动的半径不同,故各点线速度大小不相等。
92、同一轮子上各质点的角速度关系:由于同一轮子上的各质点与转轴的连线在相同的时间内转过的角度相同,因此各质点角速度相同。各质点具有相同的ω、T和n。
93、在齿轮传动或皮带传动(皮带不打滑,摩擦传动中接触面不打滑)装置正常工作的情况下,皮带上各点及轮边缘各点的线速度大小相等。
94、匀速圆周运动的向心力就是物体的合外力,但变速圆周运动的向心力不一定是合外力。
95、当向心力有静摩擦力提供时,静摩擦力的大小和方向是由运动状态决定的。
96、绳只能产生拉力,杆对球既可以产生拉力又可以产生压力,所以求作用力时,应先利用临界条件判断杆对球施力的方向,或先假设力朝某一方向,然后根据所求结果进行判断。
高中物理知识点总结3
高中物理知识点总结如下:
1.力学:力学有六大自然学现象,分别是:力的作用效果、力的大小、方向、作用点等。
2.动力学:动力学研究的是物体速度和加速度的关系。
3.电磁学:电磁学包括电学和磁学两个部分。
4.光学:光学是光学理论,包括光和色的'特性、光的波动性、光的衍射、折射和干涉等等。
5.量子力学:量子力学是研究微观粒子运动规律的物理学,主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论。
以上是高中物理知识点总结,希望对你有所帮助。
高中物理知识点总结4
重力势能
1.电势能的概念
(1)电势能
电荷在电场中具有的势能。
(2)电场力做功与电势能变化的关系
在电场中移动电荷时电场力所做的功在数值上等于电荷电势能的减少量,即WAB=εA-εB。
①当电场力做正功时,即WAB>0,则εA>εB,电势能减少,电势能的减少量等于电场力所做的功,即Δε减=WAB。
②当电场力做负功时,即WAB<0,则εA<εB,电势能在增加,增加的电势能等于电场力做功的绝对值,即Δε增=εB-εA=-WAB=|WAB|,但仍可以说电势能在减少,只不过电势能的减少量为负值,即ε减=εA-εB=WAB。
说明:某一物理过程中其物理量的增加量一定是该物理量的末状态值减去其初状态值,减少量一定是初状态值减去末状态值。
(3)零电势能点
在电场中规定的任何电荷在该点电势能为零的点。理论研究中通常取无限远点为零电势能点,实际应用中通常取大地为零电势能点。
说明:①零电势能点的选择具有任意性。
②电势能的数值具有相对性。
③某一电荷在电场中确定两点间的电势能之差与零电势能点的'选取无关。
2.电势的概念
(1)定义及定义式
电场中某点的电荷的电势能跟它的电量比值,叫做这一点的电势。
(2)电势的单位:伏(V)。
(3)电势是标量。
(4)电势是反映电场能的性质的物理量。
(5)零电势点
规定的电势能为零的点叫零电势点。理论研究中,通常以无限远点为零电势点,实际研究中,通常取大地为零电势点。
(6)电势具有相对性
电势的数值与零电势点的选取有关,零电势点的选取不同,同一点的电势的数值则不同。
(7)顺着电场线的方向电势越来越低。电场强度的方向是电势降低最快的方向。
(8)电势能与电势的关系:ε=qU。
高中物理知识点总结5
1、磁现象:
磁性:物体能够吸引钢铁、钴、镍一类物质的性质叫磁性。
磁体:具有磁性的物体,叫做磁体。
磁体的分类:①形状:条形磁体、蹄形磁体、针形磁体;
②来源:天然磁体(磁铁矿石)、人造磁体;
③保持磁性的时间长短:硬磁体(永磁体)、软磁体。
磁极:磁体上磁性最强的部分叫磁极。磁体两端的磁性最强,中间的磁性最弱。
磁体的指向性:可以在水平面内自由转动的条形磁体或磁针,静止后总是一个磁极指南(叫南极,用S表示),另一个磁极指北(叫北极,用N表示)。
磁极间的相互作用:同名磁极互相排斥,异名磁极互相吸引。
无论磁体被摔碎成几块,每一块都有两个磁极。
磁化:一些物体在磁体或电流的作用下会获得磁性,这种现象叫做磁化。
钢和软铁都能被磁化:软铁被磁化后,磁性很容易消失,称为软磁性材料;钢被磁化后,磁性能长期保持,称为硬磁性材料。所以钢是制造永磁体的好材料。
2、磁场:
磁场:磁体周围的空间存在着一种看不见、摸不着的物质,我们把它叫做磁场。
磁场的基本性质:对放入其中的磁体产生磁力的作用。
磁场的方向:物理学中把小磁针静止时北极所指的方向规定为该点磁场的方向。
磁感线:在磁场中画一些有方向的曲线,方便形象的描述磁场,这样的曲线叫做磁感线。对磁感线的认识:
①磁感线是假想的曲线,本身并不存在;
②磁感线切线方向就是磁场方向,就是小磁针静止时N极指向;
③在磁体外部,磁感线都是从磁体的N极出发,回到S极。在磁体内部正好相反。 ④磁感线的`疏密可以反应磁场的强弱,磁性越强的地方,磁感线越密;
3、地磁场:
地磁场:地球本身是一个巨大的磁体,在地球周围的空间存在着磁场,叫做地磁场。
指南针:小磁针指南的叫南极(S),指北的叫北极(N),小磁针能够指南北是因为受到了地磁场的作用。地磁场的北极在地理南极附近;地磁场的南极在地理北极附近。
地磁偏角:地理的两极和地磁的两极并不重合,磁针所指的南北方向与地理的南北极方向稍有偏离(地磁偏角),世界上最早记述这一现象的人是我国宋代的学者沈括。
高中物理知识点总结6
功、功率、机械能和能源
1.做功两要素:力和物体在力的方向上发生位移
2.功:功是标量,只有大小,没有方向,但有正功和负功之分,单位为焦耳(J)
3.物体做正功负功问题(将α理解为F与V所成的角,更为简单)
(1)当α=90度时,W=0.这表示力F的方向跟位移的方向垂直时,力F不做功,
如小球在水平桌面上滚动,桌面对球的支持力不做功。
(2)当α<90度时,cosα>0,W>0.这表示力F对物体做正功。
如人用力推车前进时,人的推力F对车做正功。
(3)当α大于90度小于等于180度时,cosα<0,W<0.这表示力F对物体做负功。
如人用力阻碍车前进时,人的推力F对车做负功。
一个力对物体做负功,经常说成物体克服这个力做功(取绝对值)。
例如,竖直向上抛出的球,在向上运动的过程中,重力对球做了-6J的功,可以说成球克服重力做了6J的功。说了“克服”,就不能再说做了负功
4.动能是标量,只有大小,没有方向。表达式
5.重力势能是标量,表达式
(1)重力势能具有相对性,是相对于选取的参考面而言的。因此在计算重力势能时,应该明确选取零势面。
(2)重力势能可正可负,在零势面上方重力势能为正值,在零势面下方重力势能为负值。
6.动能定理:
W为外力对物体所做的总功,m为物体质量,v为末速度,为初速度
解答思路:
①选取研究对象,明确它的运动过程。
②分析研究对象的受力情况和各力做功情况,然后求各个外力做功的代数和。
③明确物体在过程始末状态的动能和。
④列出动能定理的方程。
7.机械能守恒定律:(只有重力或弹力做功,没有任何外力做功。)
解题思路:
①选取研究对象----物体系或物体
②根据研究对象所经历的物理过程,进行受力,做功分析,判断机械能是否守恒。
③恰当地选取参考平面,确定研究对象在过程的.初、末态时的机械能。
④根据机械能守恒定律列方程,进行求解。
8.功率的表达式:,或者P=FV功率:描述力对物体做功快慢;是标量,有正负
9.额定功率指机器正常工作时的最大输出功率,也就是机器铭牌上的标称值。
实际功率是指机器工作中实际输出的功率。机器不一定都在额定功率下工作。实际功率总是小于或等于额定功率。
10、能量守恒定律及能量耗散
高中物理知识点总结7
1、1785年法国物理学家库仑:借助卡文迪许扭秤装置并类比万有引力定律,通过实验发现了电荷之间的相互作用规律——库仑定律。
2、1826年德国物理学家xxx:通过实验得出导体中的电流跟它两端的电压成正比,跟它的电阻成反比即xxx定律。
3、1820年,丹麦物理学家xxx:电流可以使周围的磁针发生偏转,称为电流的磁效应。
4、1831年英国物理学家法拉第:发现了由磁场产生电流的条件和规律——电磁感应现象。
5、1834年,俄国物理学家楞次:确定感应电流方向的定律——楞次定律。
6、1864年英国物理学家xxx韦:预言了电磁波的'存在,指出光是一种电磁波,并从理论上得出光速等于电磁波的速度,为光的电磁理论奠定了基础。
7、1888年德国物理学家赫兹:用莱顿瓶所做的实验证实了电磁波的存在并测定了电磁波的传播速度等于光速并率先发现“光电效应现象”。
高中物理知识点总结8
力和运动学:
力是物体之间的相互作用。运动学研究物体位置随时间的变化。
牛顿运动定律是高中物理的核心内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态为止。
机械能守恒定律和能量守恒定律:
能量守恒定律是指能量既不会凭空产生,也不会凭空消失,它只会从一种形式转化为另一种形式,或者从一个物体转移到其他物体,而能量的总玳保持不变。
机械能守恒定律是指在一个只有保守力(见保守力与耗散力)做功的物理系{(见牛顿运动定律;亦称“势力学”)}中,动能和势能相互转化,但机械能的总量保持不变。
振动和波动:
振动是指物体沿直线或曲线并经过其平衡位置所作的往复运动。
波动是指振动在介质中的传播。
热力学定律:
热力学第一定律(能量守恒定律)世间万物总能量不会变,但能源可由一种形式转为另一种形式。
热力学第二定律(熵增定律)不可能把热从低温物体传到高温物体而不产生其他影响;不可能从单一热源取热使之完全转换为有用的功而不产生其他影响;不可逆热力过程中熵的微增量总是大于零。
总的来说,高中物理知识点需要掌握基本的物理概念、原理和数学方法,注重理解和应用,掌握物理实验技能,并通过练习加深对知识点的理解和运用能力。
高中物理知识点
1.气体的状态参量:
温度:宏观上,物体的冷热程度 高一;微观上,物体内部分子无规则运动的剧烈程度的标志,热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}
体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL
压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)
2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大
3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}
注:
(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;
(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。
高中物理重要知识点
1.光本性学说的发展简史
(1)牛顿的微粒说:认为光是高速粒子流.它能解释光的直进现象,光的反射现象.
(2)惠更斯的波动说:认为光是某种振动,以波的形式向周围传播.它能解释光的干涉和衍射现象.
2、光的干涉
光的干涉的条件是:有两个振动情况总是相同的波源,即相干波源。(相干波源的频率必须相同)。形成相干波源的方法有两种:⑴利用激光(因为激光发出的是单色性极好的光)。⑵设法将同一束光分为两束(这样两束光都来源于同一个光源,因此频率必然相等)。下面4个图分别是利用双缝、利用楔形薄膜、利用空气膜、利用平面镜形成相干光源的示意图。
2.干涉区域内产生的亮、暗纹
⑴亮纹:屏上某点到双缝的光程差等于波长的整数倍,即δ=nλ(n=0,1,2,……)
⑵暗纹:屏上某点到双缝的'光程差等于半波长的奇数倍,即δ=(n=0,1,2,……)
相邻亮纹(暗纹)间的.距离。用此公式可以测定单色光的波长。用白光作双缝干涉实验时,由于白光内各种色光的波长不同,干涉条纹间距不同,所以屏的中央是白色亮纹,两边出现彩色条纹。
3.衍射----光通过很小的孔、缝或障碍物时,会在屏上出现明暗相间的条纹,且中央条纹很亮,越向边缘越暗。
⑴各种不同形状的障碍物都能使光发生衍射。
⑵发生明显衍射的条件是:障碍物(或孔)的尺寸可以跟波长相比,甚至比波长还小。(当障碍物或孔的尺寸小于0.5mm时,有明显衍射现象。)
⑶在发生明显衍射的条件下当窄缝变窄时亮斑的范围变大条纹间距离变大,而亮度变暗。
4、光的偏振现象:通过偏振片的光波,在垂直于传播方向的平面上,只沿着一个特定的方向振动,称为偏振光。光的偏振说明光是横波。
5.光的电磁说
⑴光是电磁波(麦克斯韦预言、赫兹用实验证明了正确性。)
⑵电磁波谱。波长从大到小排列顺序为:无线电波、红外线、可见光、紫外线、X射线、γ射线。各种电磁波中,除可见光以外,相邻两个波段间都有重叠。
各种电磁波的产生机理分别是:无线电波是振荡电路中自由电子的周期性运动产生的;红外线、可见光、紫外线是原子的外层电子受到激发后产生的;伦琴射线是原子的内层电子受到激发后产生的;γ射线是原子核受到激发后产生的。
⑶红外线、紫外线、X射线的主要性质及其应用举例。
种类产生主要性质应用举例
红外线一切物体都能发出热效应遥感、遥控、加热
紫外线一切高温物体能发出化学效应荧光、杀菌、合成VD2
X射线阴极射线射到固体表面穿透能力强人体透视、金属探伤
高中物理知识点归纳
1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:
(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
高中物理知识点总结9
知识点:力和运动
受力分析、物体的平衡及其条件,是每年必考知识点。
预计在20xx年高考中,本专题内容仍然是高考命题的重点和热点,从近几年的试题难度看,本专题单独命题,难度可能不大,重在对基础知识与基本应用的考查,其中卫星导航、航天工程、宇宙探测、体育运动、科技与生活热点问题要特别关注。
知识点:动量和能量
安徽省高考对本专题的知识点考查频率非常高,每年必考,对动能定理、机械能守恒定律、功能关系考查难度较大。
“动量和能量观点是贯穿整个物理学最基本的观点,动量守恒定律、能量守恒定律是自然界中普遍适用的基本规律,涉及面广、综合性强、能力要求高,多年的压轴题均与本专题知识有关。”杨坤预计,在20xx年高考中,会继续延续近两年的命题特点,一种可能是以功——功率、动能定理和机械能守恒定律为考查热点,主要以选择题的形式出现,考查考生对基本概念、规律的掌握情况和初步应用的能力。另一种可能是与牛顿运动定律、曲线运动、电场和电磁感应等知识综合起来考查,题型以计算题为主。考题紧密联系生产生活、现代科技等问题,如传送带的功率消耗、站台的节能设计、弹簧中的能量、碰撞中的动量守恒问题等。
知识点:带电粒子在电场和磁场中的运动
从历年来试题的难度上看,大多属于中等难度和较难的题,考题常以科学技术的具体问题为背景,考查从实际问题中获取并处理信息,解决实际问题的能力。
计算题主要考查带电粒子在电场、磁场中的运动和在复合场中的运动,特别是带电粒子在有界磁场、组合场中的运动,涉及运动轨迹的几何分析和临界分析,考查的可能性较大。
“20xx年高考理综物理试题仍将突出对电场和磁场中运动的考查,考查形式既可以是选择题也可以是计算题,选择题用来考查场的描述和性质、场力。” 杨坤分析,计算题主要考查带电粒子在电场、磁场中的运动和在复合场中的运动,特别是带电粒子在有界磁场、组合场中的`运动,涉及运动轨迹的几何分析和临界分析,考查的可能性较大。其中电场和磁场知识与生产技术、生活实际、科学研究相结合,如示波管、质谱仪、回旋加速器、速度选择器和磁流体发电机等物理模型的应用问题要特别注意。
知识点:电磁感应和电路的分析、计算
在20xx年高考中对本专题知识的考查可能是与其他知识点进行综合考查,突出考查电磁感应、电路等部分内容。
考查的热点内容可能是滑轨类问题、线框穿越有界匀强磁场问题、电磁感应图像问题和电磁感应中的能量问题。
从近四年高考试卷知识点分布来看,高考对本专题的内容考查频率比较高,特别是电磁感应部分,每年必考。“对本专题知识点的考查,安徽省高考试题常以选择题的形式出现,但也有以计算题的形式出现的。”杨坤分析,对电路的考查则经常是与实验考查相结合,对串并联电路考查较浅,对交流电的考查相对来说较少而且偏易,对电磁感应的考查相对来说难度偏大,而且经常与其他知识点进行综合考查,不仅考查考生对基础知识和基本规律的掌握,还考查考生对基础知识和基本规律的理解与应用。
“预计在20xx年高考中对本专题知识的考查可能是与其他知识点进行综合考查,突出考查电磁感应、电路等部分内容。”杨坤老师强调,考查的热点内容可能是滑轨类问题、线框穿越有界匀强磁场问题、电磁感应图像问题和电磁感应中的能量问题,“在考试说明的题例中增加了滑轨类问题的实例,这或许是一个信号,希望能引起大家的注意。”
高中物理知识点总结10
1.两种电荷
(1)自然界中存在两种电荷:正电荷与负电荷
(2)电荷守恒定律
2.库仑定律
(1)内容:在真空中两个点电荷间的作用力跟它们的电荷量的乘积成正比,跟它们之间的距离的平方成反比,作用力的方向在它们的连线上.
(2)适用条件:真空中的点电荷.
点电荷是一种理想化的模型.如果带电体本身的线度比相互作用的带电体之间的距离小得多,以致带电体的体积和形状对相互作用力的影响可以忽略不计时,这种带电体就可以看成点电荷,但点电荷自身不一定很小,所带电荷量也不一定很少.
3.电场强度、电场线
(1)电场:带电体周围存在的一种物质,是电荷间相互作用的媒体.电场是客观存在的,电场具有力的特性和能的特性.
(2)电场强度:放入电场中某一点的电荷受到的电场力跟它的电荷量的比值,叫做这一点的电场强度.定义式:
E=F/q方向:正电荷在该点受力方向.
(3)电场线:在电场中画出一系列的从正电荷出发到负电荷终止的曲线,使曲线上每一点的切线方向都跟该点的场强方向一致,这些曲线叫做电场线.电场线的性质:
①电场线是起始于正电荷(或无穷远处),终止于负电荷(或无穷远处);
②电场线的疏密反映电场的强弱;
③电场线不相交;
④电场线不是真实存在的;
⑤电场线不一定是电荷运动轨迹.
(4)匀强电场:在电场中,如果各点的场强的大小和方向都相同,这样的电场叫匀强电场.匀强电场中的电场线是间距相等且互相平行的直线.
(5)电场强度的叠加:电场强度是矢量,当空间的电场是由几个点电荷共同激发的时候,空间某点的电场强度等于每个点电荷单独存在时所激发的电场在该点的场强的矢量和.
4.电势差U:电荷在电场中由一点A移动到另一点B时,电场力所做的功WAB与电荷量q的比值WAB/q叫做AB两点间的电势差.公式:UAB=WAB/q电势差有正负:UAB=-UBA,一般常取绝对值,写成U.
5.电势φ:电场中某点的电势等于该点相对零电势点的'电势差.
(1)电势是个相对的量,某点的电势与零电势点的选取有关(通常取离电场无穷远处或大地的电势为零电势).因此电势有正、负,电势的正负表示该点电势比零电势点高还是低.
(2)沿着电场线的方向,电势越来越低.
6.电势能:电荷在电场中某点的电势能在数值上等于把电荷从这点移到电势能为零处(电势为零处)电场力所做的功ε=qU
7.等势面:电场中电势相等的点构成的面叫做等势面.
(1)等势面上各点电势相等,在等势面上移动电荷电场力不做功.
(2)等势面一定跟电场线垂直,而且电场线总是由电势较高的等势面指向电势较低的等势面.
(3)画等势面(线)时,一般相邻两等势面(或线)间的电势差相等.这样,在等势面(线)密处场强大,等势面(线)疏处场强小.
8.电场中的功能关系
(1)电场力做功与路径无关,只与初、末位置有关.
计算方法有:由公式W=qEcosθ计算(此公式只适合于匀强电场中),或由动能定理计算.
(2)只有电场力做功,电势能和电荷的动能之和保持不变.
(3)只有电场力和重力做功,电势能、重力势能、动能三者之和保持不变.
9.静电屏蔽:处于电场中的空腔导体或金属网罩,其空腔部分的场强处处为零,即能把外电场遮住,使内部不受外电场的影响,这就是静电屏蔽.
10.带电粒子在电场中的运动
(1)带电粒子在电场中加速
带电粒子在电场中加速,若不计粒子的重力,则电场力对带电粒子做功等于带电粒子动能的增量.
(2)带电粒子在电场中的偏转
带电粒子以垂直匀强电场的场强方向进入电场后,做类平抛运动.垂直于场强方向做匀速直线运动
(3)是否考虑带电粒子的重力要根据具体情况而定.一般说来:
①基本粒子:如电子、质子、α粒子、离子等除有说明或明确的暗示以外,一般都不考虑重力(但不能忽略质量).
②带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或明确的暗示以外,一般都不能忽略重力.
(4)带电粒子在匀强电场与重力场的复合场中运动
由于带电粒子在匀强电场中所受电场力与重力都是恒力,因此可以用两种方法处理:
①正交分解法;
②等效“重力”法.
11.示波管的原理:示波管由电子枪,偏转电极和荧光屏组成,管内抽成真空.如果在偏转电极--′上加扫描电压,同时加在偏转电极YY′上所要研究的信号电压,其周期与扫描电压的周期相同,在荧光屏上就显示出信号电压随时间变化的图线.
12.电容定义:电容器的带电荷量跟它的两板间的电势差的比值
[注意]电容器的电容是反映电容本身贮电特性的物理量,由电容器本身的介质特性与几何尺寸决定,与电容器是否带电、带电荷量的多少、板间电势差的大小等均无关。
(3)单位:法拉(F),1F=106μF,1μF=106pF.
13、稳恒电流
电流---
(1)定义:电荷的定向移动形成电流.
(2)电流的方向:规定正电荷定向移动的方向为电流的方向.
在外电路中电流由高电势点流向低电势点,在电源的内部电流由低电势点流向高电势点(由负极流向正极).
2.电流强度:------
(1)定义:通过导体横截面的电量跟通过这些电量所用时间的比值,I=q/t
(2)在国际单位制中电流的单位是安.1mA=10-3A,1μA=10-6A
(3)电流强度的定义式中,如果是正、负离子同时定向移动,q应为正负离子的电荷量和.
2.电阻--
(1)定义:导体两端的电压与通过导体中的电流的比值叫导体的电阻
(2)定义式:R=U/I,单位:Ω
(3)电阻是导体本身的属性,跟导体两端的电压及通过电流无关.
3.电阻定律
(1)内容:在温度不变时,导体的电阻R与它的长度L成正比,与它的横截面积S成反比.
(2)公式:R=ρL/S.(3)适用条件:①粗细均匀的导线;②浓度均匀的电解液.
4.电阻率:反映了材料对电流的阻碍作用.
(1)有些材料的电阻率随温度升高而增大(如金属);有些材料的电阻率随温度升高而减小(如半导体和绝缘体);有些材料的电阻率几乎不受温度影响(如锰铜和康铜).
(2)半导体:导电性能介于导体和绝缘体之间,而且电阻随温度的增加而减小,这种材料称为半导体,半导体有热敏特性,光敏特性,掺入微量杂质特性.
(3)超导现象:当温度降低到绝对零度附近时,某些材料的电阻率突然减小到零,这种现象叫超导现象,处于这种状态的物体叫超导体。
高中物理知识点总结11
一。力学中的物理学史知识点
1、前384年—前322年,古希腊杰出思想家亚里士多德:在对待“力与运动的关系”问题上,错误的认为“维持物体运动需要力”。
2、1638年意大利物理学家伽利略:最早研究“匀加速直线运动”;论证“重物体不会比轻物体下落得快”的物理学家;利用著名的“斜面理想实验”得出“在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去即维持物体运动不需要力”的结论;发明了空气温度计;理论上验证了落体运动、抛体运动的规律;还制成了第一架观察天体的望远镜;第一次把“实验”引入对物理的研究,开阔了人们的眼界,打开了人们的新思路;发现了“摆的等时性”等。
3、1683年,英国科学家牛顿:总结三大运动定律、发现万有引力定律。另外牛顿还发现了光的`色散原理;创立了微积分、发明了二项式定理;研究光的本性并发明了反射式望远镜。其最有影响的著作是《自然哲学的数学原理》。
4、1798年英国物理学家卡文迪许:利用扭秤装置比较准确地测出了万有引力常量G=6.67×11-11n·m2/kg2(微小形变放大思想)。
5、1905年爱因斯坦:提出狭义相对论,经典力学不适用于微观粒子和高速运动物体。即“宏观”、“低速”是牛顿运动定律的适用范围。
二。热学中的物理学史
1、1827年英国植物学家布朗:发现悬浮在水中的花粉微粒不停地做无规则运动的现象——布朗运动。
2、1661年英国物理学家玻意耳发现:一定质量的气体在温度不变时,它的压强与体积成反比,即为玻意耳定律。
3、1787年法国物理学家查理发现:一定质量的气体在体积不变时,它的压强与热力学温度成正比,即为查理定律。
4、1802年法国物理学家盖·吕萨克发现:一定质量的气体在压强不变时,它的体积与热力学温度成正比,即为盖·吕萨克定律。
三。电、磁学中的物理学史
1、1785年法国物理学家库仑:借助卡文迪许扭秤装置并类比万有引力定律,通过实验发现了电荷之间的相互作用规律——库仑定律。
2、1826年德国物理学家欧姆:通过实验得出导体中的电流跟它两端的电压成正比,跟它的电阻成反比即欧姆定律。
3、1820年,丹麦物理学家奥斯特:电流可以使周围的磁针发生偏转,称为电流的磁效应。
4、1831年英国物理学家法拉第:发现了由磁场产生电流的条件和规律——电磁感应现象。
5、1834年,俄国物理学家楞次:确定感应电流方向的定律——楞次定律。
6、1864年英国物理学家麦克斯韦:预言了电磁波的存在,指出光是一种电磁波,并从理论上得出光速等于电磁波的速度,为光的电磁理论奠定了基础。
7、1888年德国物理学家赫兹:用莱顿瓶所做的实验证实了电磁波的存在并测定了电磁波的传播速度等于光速并率先发现“光电效应现象”。
高中物理知识点总结12
1电场基本规律
1、库仑定律
(1)定律内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的平方成反比,作用力的方向在它们的连线上。
(2)表达式:k=9.0×109N·m2/C2——静电力常量
(3)适用条件:真空中静止的点电荷。
2、电荷守恒定律
电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,在转移过程中,电荷的总量保持不变。
(1)三种带电方式:摩擦起电,感应起电,接触起电。
(2)元电荷:最小的带电单元,任何带电体的带电量都是元电荷的整数倍,e=
1.6×10-19C——密立根测得e的值。
2电场能的性质
1、电场能的基本性质:电荷在电场中移动,电场力要对电荷做功。
2、电势φ
(1)定义:电荷在电场中某一点的电势能Ep与电荷量的比值。
(2)定义式:φ——单位:伏(V)——带正负号计算
(3)特点:
1、电势具有相对性,相对参考点而言。但电势之差与参考点的选择无关。
2、电势一个标量,但是它有正负,正负只表示该点电势比参考点电势高,还是低。
3、电势的大小由电场本身决定,与Ep和q无关。
4、电势在数值上等于单位正电荷由该点移动到零势点时电场力所做的功。
(4)电势高低的判断方法
1、根据电场线判断:沿着电场线电势降低。φA>φB
2、根据电势能判断:
正电荷:电势能大,电势高;电势能小,电势低。
负电荷:电势能大,电势低;电势能小,电势高。
结论:只在电场力作用下,静止的电荷从电势能高的地方向电势能低的地方运动。
3电势能Ep
(1)定义:电荷在电场中,由于电场和电荷间的相互作用,由位置决定的`能量。电荷在某点的电势能等于电场力把电荷从该点移动到零势能位置时所做的功。
(2)定义式:——带正负号计算
(3)特点:
1、电势能具有相对性,相对零势能面而言,通常选大地或无穷远处为零势能面。
2、电势能的变化量△Ep与零势能面的选择无关。
4电势差UAB
(1)定义:电场中两点间的电势之差。也叫电压。
(2)定义式:UAB=φA-φB
(3)特点:
1、电势差是标量,但是却有正负,正负只表示起点和终点的电势谁高谁低。若UAB>0,则UBA<0。
2、单位:伏
3、电场中两点的电势差是确定的,与零势面的选择无关
4、U=Ed匀强电场中两点间的电势差计算公式。——电势差与电场强度之间的关系。
5静电平衡状态
(1)定义:导体内不再有电荷定向移动的稳定状态
(2)特点:
1、处于静电平衡状态的导体,内部场强处处为零。
2、感应电荷在导体内任何位置产生的电场都等于外电场在该处场强的大小相等,方向相反。
3、处于静电平衡状态的整个导体是个等势体,导体表面是个等势面。
4、电荷只分布在导体的外表面,在导体表面的分布与导体表面的弯曲程度有关,越弯曲,电荷分布越多。
6电场力做功WAB
(1)电场力做功的特点:电场力做功与路径无关,只与初末位置有关,即与初末位置的电势差有关。
(2)表达式:WAB=UABq—带正负号计算(适用于任何电场)WAB=Eqd—d沿电场方向的距离。——匀强电场
(3)电场力做功与电势能的关系WAB=-△Ep=EpA-EPB
结论:电场力做正功,电势能减少电场力做负功,电势能增加
7等势面
(1)定义:电势相等的点构成的面。
(2)特点:
等势面上各点电势相等,在等势面上移动电荷,电场力不做功。
等势面与电场线垂直
两等势面不相交
等势面的密集程度表示场强的大小:疏弱密强。
画等势面时,相邻等势面间的电势差相等。
(3)判断电场线上两点间的电势差的大小:靠近场源(场强大)的两间的电势差大于远离场源(场强小)相等距离两点间的电势差。
高中物理静电场公式总结
1.两种电荷、电荷守恒定律、元电荷:e=1.6×10-19C
2.库仑定律:F=kQ1Q2/r2 (在真空中)
3.电场强度:E=F/q(定义式、计算式)
4.真空点(源)电荷形成的电场E=kQ/r2
5.匀强电场的场强E=UAB/d
6.电场力:F=qE
7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.电场力做功:WAB=qUAB=Eqd
9.电势能:EA=qφA
10.电势能的变化ΔEAB=EB-EA
11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)
12.电容C=Q/U(定义式,计算式)
13.平行板电容器的电容C=εr*S/4πkd=εS/d
14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2 /2,Vt=(2qU/m)1/2
15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下) 类平 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d) 抛运动 平行电场方向:初速度为零的匀加速直线运动d=at2 /2,a=F/m=qE/m
高中物理知识点总结13
知识点总结
一、开普勒行星运动定律
(1)、所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上,
(2)、对于每一颗行星,太阳和行星的联线在相等的时间内扫过相等的面积,
(3)、所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。
二、万有引力定律
1、内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比、
2、公式:F=Gr2m1m2,其中G=6.67×10-11 N·m2/kg2,称为引力常量、
3、适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r应为两物体重心间的距离、对于均匀的球体,r是两球心间的距离、
三、万有引力定律的应用
1、解决天体(卫星)运动问题的基本思路
(1)把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供,关系式:Gr2Mm=mrv2=mω2r=mT2π2r.
(2)在地球表面或地面附近的物体所受的重力等于地球对物体的万有引力,即mg=GR2Mm,gR2=GM.
2、天体质量和密度的估算通过观察卫星绕天体做匀速圆周运动的周期T,轨道半径r,由万有引力等于向心力,即Gr2Mm=mT24π2r,得出天体质量M=GT24π2r3.
(1)若已知天体的半径R,则天体的密度ρ=VM=πR34=GT2R33πr3
(2)若天体的卫星环绕天体表面运动,其轨道半径r等于天体半径R,则天体密度ρ=GT23π可见,只要测出卫星环绕天体表面运动的周期,就可求得天体的密度、
3、人造卫星
(1)研究人造卫星的'基本方法:看成匀速圆周运动,其所需的向心力由万有引力提供、Gr2Mm=mrv2=mrω2=mrT24π2=ma向、
(2)卫星的线速度、角速度、周期与半径的关系
①由Gr2Mm=mrv2得v=rGM,故r越大,v越小、
②由Gr2Mm=mrω2得ω=r3GM,故r越大,ω越小、
③由Gr2Mm=mrT24π2得T=GM4π2r3,故r越大,T越大
(3)人造卫星的超重与失重
①人造卫星在发射升空时,有一段加速运动;在返回地面时,有一段减速运动,这两个过程加速度方向均向上,因而都是超重状态、
②人造卫星在沿圆轨道运动时,由于万有引力提供向心力,所以处于完全失重状态、在这种情况下凡是与重力有关的力学现象都会停止发生、
(4)三种宇宙速度
①第一宇宙速度(环绕速度)v1=7.9 km/s.这是卫星绕地球做圆周运动的最大速度,也是卫星的最小发射速度、若7.9 km/s≤v<11.2 km/s,物体绕地球运行、
②第二宇宙速度(脱离速度)v2=11.2 km/s.这是物体挣脱地球引力束缚的最小发射速度、若11.2 km/s≤v<16.7 km/s,物体绕太阳运行、
③第三宇宙速度(逃逸速度)v3=16.7 km/s这是物体挣脱太阳引力束缚的最小发射速度、若v≥16.7 km/s,物体将脱离太阳系在宇宙空间运行、
题型:
1、求星球表面的重力加速度在星球表面处万有引力等于或近似等于重力,则:GR2Mm=mg,所以g=R2GM(R为星球半径,M为星球质量)、由此推得两个不同天体表面重力加速度的关系为:g2g1=R12R22·M2M1.
2、求某高度处的重力加速度若设离星球表面高h处的重力加速度为gh,则:G(R+h)2Mm=mgh,所以gh=(R+h)2GM,可见随高度的增加重力加速度逐渐减小、ggh=(R+h)2R2.
3、近地卫星与同步卫星
(1)近地卫星其轨道半径r近似地等于地球半径R,其运动速度v=RGM==7.9 km/s,是所有卫星的最大绕行速度;运行周期T=85 min,是所有卫星的最小周期;向心加速度a=g=9.8 m/s2是所有卫星的最大加速度、
(2)地球同步卫星的五个“一定”
①周期一定T=24 h. ②距离地球表面的高度(h)一定③线速度(v)一定④角速度(ω)一定
⑤向心加速度(a)一定
高中物理知识点总结14
高中物理的确难,实用口诀能帮忙。物理公式、规律主要通过理解和运用来记忆,本口诀也要通过理解,发挥韵调特点,能对高中物理重要知识记忆起辅助作用。
一、运动的描述
1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。物体位置的变化,准确描述用位移,运动快慢s比t,a用δv与t比。
2.运用一般公式法,平均速度是简法,中间时刻速度法,初速度零比例法,再加几何图像法,求解运动好方法。自由落体是实例,初速为零a等g.竖直上抛知初速,上升最高心有数,飞行时间上下回,整个过程匀减速。中心时刻的速度,平均速度相等数;求加速度有好方,δs等at平方。
3.速度决定物体动,速度加速度方向中,同向加速反向减,垂直拐弯莫前冲。
二、力
1.解力学题堡垒坚,受力分析是关键;分析受力性质力,根据效果来处理。
2.分析受力要仔细,定量计算七种力;重力有无看
提示,根据状态定弹力;先有弹力后摩擦,相对运动是依据;万有引力在万物,电场力存在定无疑;洛仑兹力安培力,二者实质是统一;相互垂直力最大,平行无力要切记。
3.同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明;两力合力小和大,两个力成q角夹,平行四边形定法;合力大小随q变,只在最大最小间,多力合力合另边。
多力问题状态揭,正交分解来解决,三角函数能化解。
4.力学问题方法多,整体隔离和假设;整体只需看外力,求解内力隔离做;状态相同用整体,否则隔离用得多;即使状态不相同,整体牛二也可做;假设某力有或无,根据计算来定夺;极限法抓临界态,程序法按顺序做;正交分解选坐标,轴上矢量尽量多。
三、牛顿运动定律
1.f等ma,牛顿二定律,产生加速度,原因就是力。
合力与a同方向,速度变量定a向,a变小则u可大,只要a与u同向。
2.n、t等力是视重,mg乘积是实重;超重失重视视重,其中不变是实重;加速上升是超重,减速下降也超重;失重由加降减升定,完全失重视重零
四、曲线运动、万有引力
1.运动轨迹为曲线,向心力存在是条件,曲线运动速度变,方向就是该点切线。
2.圆周运动向心力,供需关系在心里,径向合力提供足,需mu平方比r,mrw平方也需,供求平衡不心离。
3.万有引力因质量生,存在于世界万物中,皆因天体质量大,万有引力显神通。卫星绕着天体行,快慢运动的'卫星,均由距离来决定,距离越近它越快,距离越远越慢行,同步卫星速度定,定点赤道上空行。
五、机械能与能量
1.确定状态找动能,分析过程找力功,正功负功加一起,动能增量与它同。
2.明确两态机械能,再看过程力做功,“重力”之外功为零,初态末态能量同。
3.确定状态找量能,再看过程力做功。有功就有能转变,初态末态能量同。
六、电场
1.库仑定律电荷力,万有引力引场力,好像是孪生兄弟,kqq与r平方比。
2.电荷周围有电场,f比q定义场强。kq比r2点电荷,u比d是匀强电场。
电场强度是矢量,正电荷受力定方向。描绘电场用场线,疏密表示弱和强。
场能性质是电势,场线方向电势降。场力做功是qu,动能定理不能忘。
4.电场中有等势面,与它垂直画场线。方向由高指向低,面密线密是特点。
七、恒定电流
1.电荷定向移动时,电流等于q比t。自由电荷是内因,两端电压是条件。
正荷流向定方向,串电流表来计量。电源外部正流负,从负到正经内部。
2.电阻定律三因素,温度不变才得出,控制变量来论述,rl比s等电阻。
电流做功uit,电热i平方rt。电功率,w比t,电压乘电流也是。
3.基本电路联串并,分压分流要分明。复杂电路动脑筋,等效电路是关键。
4.闭合电路部分路,外电路和内电路,遵循定律属欧姆。
路端电压内压降,和就等电动势,除于总阻电流是。
八、磁场
1.磁体周围有磁场,n极受力定方向;电流周围有磁场,安培定则定方向。
2.f比il是场强,φ等bs磁通量,磁通密度φ比s,磁场强度之名异。
3.bil安培力,相互垂直要注意。
4.洛仑兹力安培力,力往左甩别忘记。
九、电磁感应
1.电磁感应磁生电,磁通变化是条件。回路闭合有电流,回路断开是电源。
感应电动势大小,磁通变化率知晓。
2.楞次定律定方向,阻碍变化是关键。导体切割磁感线,右手定则更方便。
3.楞次定律是抽象,真正理解从三方,阻碍磁通增和减,相对运动受反抗,自感电流想阻挡,能量守恒理应当。楞次先看原磁场,感生磁场将何向,全看磁通增或减,安培定则知i向。
必修和选修物理知识点汇总
十、交流电
1.匀强磁场有线圈,旋转产生交流电。电流电压电动势,变化规律是弦线。
中性面计时是正弦,平行面计时是余弦。
2.nbsω是最大值,有效值用热量来计算。
3.变压器供交流用,恒定电流不能用。
理想变压器,初级ui值,次级ui值,相等是原理。
电压之比值,正比匝数比;电流之比值,反比匝数比。
运用变压比,若求某匝数,化为匝伏比,方便地算出。
远距输电用,升压降流送,否则耗损大,用户后降压。
十一、气态方程
研究气体定质量,确定状态找参量。绝对温度用大t,体积就是容积量。
压强分析封闭物,牛顿定律帮你忙。状态参量要找准,pv比t是恒量。
十二、热力学定律
1.第一定律热力学,能量守恒好感觉。内能变化等多少,热量做功不能少。
正负符号要准确,收入支出来理解。对内做功和吸热,内能增加皆正值;对外做功和放热,内能减少皆负值。
2.热力学第二定律,热传递是不可逆,功转热和热转功,具有方向性不逆。
十三、机械振动
1.简谐振动要牢记,o为起点算位移,回复力的方向指,始终向平衡位置,
大小正比于位移,平衡位置u大极。
2.o点对称别忘记,振动强弱是振幅,振动快慢是周期,一周期走4a路,单摆周期l比g,再开方根乘2p,秒摆周期为2秒,摆长约等长1米。
到质心摆长行,单摆具有等时性。
3.振动图像描方向,从底往顶是向上,从顶往底是下向;振动图像描位移,顶点底点大位移,正负符号方向指。
十四、机械波
1.左行左坡上,右行右坡上。峰点谷点无方向。
2.顺着传播方向吧,从谷往峰想上爬,脚底总得往下蹬,上下振动迁不动。
3.不同时刻的图像,δt四分一或三,质点动向疑惑散,s等vt派用场。
十五、光学
1.自行发光是光源,同种均匀直线传。若是遇见障碍物,传播路径要改变。
反射折射两定律,折射定律是重点。光介质有折射率,(它的)定义是正弦比值,还可运用速度比,波长比值也使然。
2.全反射,要牢记,入射光线在光密。入射角大于临界角,折射光线无处觅。
十六、物理光学
1.光是一种电磁波,能产生干涉和衍射。衍射有单缝和小孔,干涉有双缝和薄膜。单缝衍射中间宽,干涉(条纹)间距差不多。小孔衍射明暗环,薄膜干涉用处多。它可用来测工件,还可制成增透膜。泊松亮斑是衍射,干涉公式要把握。〖选修3-4〗
2.光照金属能生电,入射光线有极限。光电子动能大和小,与光子频率有关联。光电子数目多和少,与光线强弱紧相连。光电效应瞬间能发生,极限频率取决逸出功。
十七、动量
1.确定状态找动量,分析过程找冲量,同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明。
2.确定状态找动量,分析过程找冲量,外力冲量若为零,初态末态动量同。
十八、原子原子核
1.原子核,中央站,电子分层围它转;向外跃迁为激发,辐射光子向内迁;光子能量hn,能级差值来计算。
2.原子核,能改变,αβ两衰变。α粒是氦核,电子流是β射线。
γ光子不单有,伴随衰变而出现。铀核分开是裂变,中子撞击是条件。
裂变可造原子弹,还可用它来发电。轻核聚合是聚变,温度极高是条件。
变可以造氢弹,还是太阳能量源;和平利用前景好,可惜至今未实现。
高中物理知识点总结15
第一章运动的描述
一、基本概念
1、质点
2、 参考系
3、坐标系
4、时刻和时间间隔
5、路程:物体运动轨迹的长度
6、位移:表示物体位置的变动。可用从起点到末点的有向线段来表示,是矢量。位移的大小小于或等于路程。
7、速度:
物理意义:表示物体位置变化的快慢程度。
分类平均速度:方向与位移方向相同
瞬时速度:
与速率的区别和联系速度是矢量,而速率是标量
平均速度=位移/时间,平均速率=路程/时间
瞬时速度的大小等于瞬时速率
8、加速度
物理意义:表示物体速度变化的快慢程度
定义:(即等于速度的变化率)
方向:与速度变化量的方向相同,与速度的方向不确定。(或与合力的方向相同)
二、运动图象(只研究直线运动)
1、x—t图象(即位移图象)
(1)、纵截距表示物体的初始位置。
(2)、倾斜直线表示物体作匀变速直线运动,水平直线表示物体静止,曲线表示物体作变速直线运动。
(3)、斜率表示速度。斜率的绝对值表示速度的大小,斜率的正负表示速度的方向。
2、v—t图象(速度图象)
(1)、纵截距表示物体的初速度。
(2)、倾斜直线表示物体作匀变速直线运动,水平直线表示物体作匀速直线运动,曲线表示物体作变加速直线运动(加速度大小发生变化)。
(3)、纵坐标表示速度。纵坐标的绝对值表示速度的大小,纵坐标的正负表示速度的方向。
(4)、斜率表示加速度。斜率的绝对值表示加速度的大小,斜率的正负表示加速度的方向。
(5)、面积表示位移。横轴上方的面积表示正位移,横轴下方的面积表示负位移。
三、实验:用打点计时器测速度
1、两种打点即使器的异同点
2、纸带分析;
(1)、从纸带上可直接判断时间间隔,用刻度尺可以测量位移。
(2)、可计算出经过某点的瞬时速度
(3)、可计算出加速度
第二章匀变速直线运动的研究
一、基本关系式v=v0+at
x=v0t+1/2at2
v2-vo2=2ax
v=x/t=(v0+v)/2
二、推论
1、 vt/2=v=(v0+v)/2
2、vx/2=
3、△x=at2 { xm-xn=(m-n)at2}
4、初速度为零的匀变速直线运动的比例式
应用基本关系式和推论时注意:
(1)、确定研究对象在哪个运动过程,并根据题意画出示意图。
(2)、求解运动学问题时一般都有多种解法,并探求最佳解法。
三、两种运动特例
(1)、自由落体运动:v0=0 a=g v=gt h=1/2gt2 v2=2gh
(2)、竖直上抛运动;v0=0 a=-g
四、关于追及与相遇问题
1、寻找三个关系:时间关系,速度关系,位移关系。两物体速度相等是两物体有最大或最小距离的临界条件。
2、处理方法:物理法,数学法,图象法。
五、理解伽俐略科学研究过程的基本要素。
第三章相互作用
一、三种常见的力
1、重力:由于地球对物体的吸引而产生的.。大小:G=mg,方向:竖直向下,
作用点:重心(重力的等效作用点)
2、弹力
(1)、形变、弹性形变、定义等。
(2)、产生条件:
(3)、拉力、支持力、压力。(按照力的作用效果来命名的)
(4)、弹簧的弹力的大小和方向,胡克定律F=kx
(5)、可用假设法来判断是否存在弹力。
3、摩擦力
(1)、静摩擦力:①、产生条件②、方向判断
③、大小要用“力的平衡”或“牛顿运动定律”来解。
(2)滑动摩擦力:①、产生条件②、方向判断
③、大小:f=uN。也可用“力的平衡”或“牛顿运动定律”来解。
(3)、可用假设法来判断是否存在摩擦力。
二、力的合成
1、定义;由分力求合力的过程。
2、合成法则:平行四边形定则或三角形定则。
3、求合力的方法
①、作图法(用刻度尺和量角器) ②、计算法(通常是利用直角三角形)
2、合力与分力的大小关系
三、力的分解
1、分解法则:平行四边形定则或三角形定则、
2、分解原则:按照实际作用效果分解(即已知两分力的方向)
3、把一个已知力分解为两个分力
①、已知两个分力的方向,求两个分力的大小。(解是唯一的)
②、已知一个分力的大小和方向,求另一个分力的大小和方向,(解是唯一的)
(注意:通过作平行四边形或三角形判断)
4、合力和分力是“等效替代”的关系。
三、实验:探究求合力的方法(或“验证平行四边形定则”)
第四章牛顿运动定律
一、牛顿第一定律
1、内容:(揭示物体不受力或合力为零的情形)
2、两个概念:①、力
②、惯性:(一切物体都具有惯性,质量是惯性大小的唯一量)
二、牛顿第二定律
1、内容:(不能从纯数学的角度表述)
2、公式:F合=ma
3、理解牛顿第二定律的要点:
①、式中F是物体所受的一切外力的合力。②、矢量性③、瞬时性
④、独立性⑤、相对性
三、牛顿第三定律
作用力和反作用力的概念
1、内容
2、作用力和反作用力的特点:①等值、反向、共线、异点②瞬时对应③性质相同
④各自产生其作用效果
3、一对相互作用力与一对平衡力的异同点
四、力学单位制
1、力学基本物理量:长度(l)质量(m)时间(t)
力学基本单位:米(m)千克(kg)秒(s)
2、应用:用单位判断结果表达式,能肯定错误(但不能肯定正确)
五、动力学的两类问题。
1、已知物体的受力情况,求物体的运动情况(v0 v t x )
2、已知物体的运动情况,求物体的受力情况( F合或某个分力)
3、应用牛顿第二定律解决问题的一般思路
(1)明确研究对象。
(2)对研究对象进行受力情况分析,画出受力示意图。
(3)建立直角坐标系,以初速度的方向或运动方向为正方向,与正方向相同的力为正,与正方向相反的力为负。在Y轴和X轴分别列牛顿第二定律的方程。
(4)解方程时,所有物理量都应统一单位,一般统一为国际单位。
4、分析两类问题的基本方法
(1)抓住受力情况和运动情况之间联系的桥梁——加速度。
(2)分析流程图
六、平衡状态、平衡条件、推论
1、处理方法:解三角形法(合成法、分解法、相似三角形法、封闭三角形法)和正交分解法
2、若物体受三力平衡,封闭三角形法最简捷。若物体受四力或四力以上平衡,用正交分解法
七、超重和失重
1、超重现象和失重现象
2、超重指加速度向上(加速上升和减速下降),超了ma;失重指加速度向下(加速下降和减速上升),失ma。
【高中物理知识点总结】相关文章:
高中物理知识点总结04-02
高中物理的知识点总结02-07
高中物理知识点总结07-24
高中物理知识点的总结06-13
高中物理知识点总结04-19
高中物理知识点总结优秀05-25
高中物理知识点总结[合集]07-21
高中物理知识点总结(优选)07-31
高中物理知识点总结[必备]07-19