高中物理知识点总结

时间:2024-07-21 10:34:29 知识点总结 我要投稿

高中物理知识点总结15篇[精选]

  总结是把一定阶段内的有关情况分析研究,做出有指导性结论的书面材料,它有助于我们寻找工作和事物发展的规律,从而掌握并运用这些规律,因此,让我们写一份总结吧。总结怎么写才不会千篇一律呢?下面是小编帮大家整理的高中物理知识点总结,欢迎阅读与收藏。

高中物理知识点总结15篇[精选]

高中物理知识点总结1

  高中物理知识点总结如下:

  1.物理现象(声、光、热、力、电)和物理概念(质量、压强、匀速运动、力学单位、电路结构、欧姆定律、电磁感应等)的介绍。

  2.各个物理定律(包括定义、公式、现象、举例等)和原理的介绍。

  3.实验操作和相关练习。

  希望以上信息对您有所帮助,如果您还有其他问题,欢迎告诉我。

高中物理知识点总结2

  1.两种电荷

  (1)自然界中存在两种电荷:正电荷与负电荷

  (2)电荷守恒定律

  2.库仑定律

  (1)内容:在真空中两个点电荷间的作用力跟它们的电荷量的乘积成正比,跟它们之间的距离的平方成反比,作用力的方向在它们的连线上.

  (2)适用条件:真空中的点电荷.

  点电荷是一种理想化的模型.如果带电体本身的线度比相互作用的带电体之间的距离小得多,以致带电体的体积和形状对相互作用力的影响可以忽略不计时,这种带电体就可以看成点电荷,但点电荷自身不一定很小,所带电荷量也不一定很少.

  3.电场强度、电场线

  (1)电场:带电体周围存在的一种物质,是电荷间相互作用的媒体.电场是客观存在的,电场具有力的特性和能的特性.

  (2)电场强度:放入电场中某一点的电荷受到的电场力跟它的电荷量的比值,叫做这一点的电场强度.定义式:

  E=F/q方向:正电荷在该点受力方向.

  (3)电场线:在电场中画出一系列的从正电荷出发到负电荷终止的曲线,使曲线上每一点的切线方向都跟该点的场强方向一致,这些曲线叫做电场线.电场线的性质:

  ①电场线是起始于正电荷(或无穷远处),终止于负电荷(或无穷远处);

  ②电场线的疏密反映电场的强弱;

  ③电场线不相交;

  ④电场线不是真实存在的;

  ⑤电场线不一定是电荷运动轨迹.

  (4)匀强电场:在电场中,如果各点的场强的.大小和方向都相同,这样的电场叫匀强电场.匀强电场中的电场线是间距相等且互相平行的直线.

  (5)电场强度的叠加:电场强度是矢量,当空间的电场是由几个点电荷共同激发的时候,空间某点的电场强度等于每个点电荷单独存在时所激发的电场在该点的场强的矢量和.

  4.电势差U:电荷在电场中由一点A移动到另一点B时,电场力所做的功WAB与电荷量q的比值WAB/q叫做AB两点间的电势差.公式:UAB=WAB/q电势差有正负:UAB=-UBA,一般常取绝对值,写成U.

  5.电势φ:电场中某点的电势等于该点相对零电势点的电势差.

  (1)电势是个相对的量,某点的电势与零电势点的选取有关(通常取离电场无穷远处或大地的电势为零电势).因此电势有正、负,电势的正负表示该点电势比零电势点高还是低.

  (2)沿着电场线的方向,电势越来越低.

  6.电势能:电荷在电场中某点的电势能在数值上等于把电荷从这点移到电势能为零处(电势为零处)电场力所做的功ε=qU

  7.等势面:电场中电势相等的点构成的面叫做等势面.

  (1)等势面上各点电势相等,在等势面上移动电荷电场力不做功.

  (2)等势面一定跟电场线垂直,而且电场线总是由电势较高的等势面指向电势较低的等势面.

  (3)画等势面(线)时,一般相邻两等势面(或线)间的电势差相等.这样,在等势面(线)密处场强大,等势面(线)疏处场强小.

  8.电场中的功能关系

  (1)电场力做功与路径无关,只与初、末位置有关.

  计算方法有:由公式W=qEcosθ计算(此公式只适合于匀强电场中),或由动能定理计算.

  (2)只有电场力做功,电势能和电荷的动能之和保持不变.

  (3)只有电场力和重力做功,电势能、重力势能、动能三者之和保持不变.

  9.静电屏蔽:处于电场中的空腔导体或金属网罩,其空腔部分的场强处处为零,即能把外电场遮住,使内部不受外电场的影响,这就是静电屏蔽.

  10.带电粒子在电场中的运动

  (1)带电粒子在电场中加速

  带电粒子在电场中加速,若不计粒子的重力,则电场力对带电粒子做功等于带电粒子动能的增量.

  (2)带电粒子在电场中的偏转

  带电粒子以垂直匀强电场的场强方向进入电场后,做类平抛运动.垂直于场强方向做匀速直线运动

  (3)是否考虑带电粒子的重力要根据具体情况而定.一般说来:

  ①基本粒子:如电子、质子、α粒子、离子等除有说明或明确的暗示以外,一般都不考虑重力(但不能忽略质量).

  ②带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或明确的暗示以外,一般都不能忽略重力.

  (4)带电粒子在匀强电场与重力场的复合场中运动

  由于带电粒子在匀强电场中所受电场力与重力都是恒力,因此可以用两种方法处理:

  ①正交分解法;

  ②等效“重力”法.

  11.示波管的原理:示波管由电子枪,偏转电极和荧光屏组成,管内抽成真空.如果在偏转电极--′上加扫描电压,同时加在偏转电极YY′上所要研究的信号电压,其周期与扫描电压的周期相同,在荧光屏上就显示出信号电压随时间变化的图线.

  12.电容定义:电容器的带电荷量跟它的两板间的电势差的比值

  [注意]电容器的电容是反映电容本身贮电特性的物理量,由电容器本身的介质特性与几何尺寸决定,与电容器是否带电、带电荷量的多少、板间电势差的大小等均无关。

  (3)单位:法拉(F),1F=106μF,1μF=106pF.

  13、稳恒电流

  电流---

  (1)定义:电荷的定向移动形成电流.

  (2)电流的方向:规定正电荷定向移动的方向为电流的方向.

  在外电路中电流由高电势点流向低电势点,在电源的内部电流由低电势点流向高电势点(由负极流向正极).

  2.电流强度:------

  (1)定义:通过导体横截面的电量跟通过这些电量所用时间的比值,I=q/t

  (2)在国际单位制中电流的单位是安.1mA=10-3A,1μA=10-6A

  (3)电流强度的定义式中,如果是正、负离子同时定向移动,q应为正负离子的电荷量和.

  2.电阻--

  (1)定义:导体两端的电压与通过导体中的电流的比值叫导体的电阻

  (2)定义式:R=U/I,单位:Ω

  (3)电阻是导体本身的属性,跟导体两端的电压及通过电流无关.

  3.电阻定律

  (1)内容:在温度不变时,导体的电阻R与它的长度L成正比,与它的横截面积S成反比.

  (2)公式:R=ρL/S.(3)适用条件:①粗细均匀的导线;②浓度均匀的电解液.

  4.电阻率:反映了材料对电流的阻碍作用.

  (1)有些材料的电阻率随温度升高而增大(如金属);有些材料的电阻率随温度升高而减小(如半导体和绝缘体);有些材料的电阻率几乎不受温度影响(如锰铜和康铜).

  (2)半导体:导电性能介于导体和绝缘体之间,而且电阻随温度的增加而减小,这种材料称为半导体,半导体有热敏特性,光敏特性,掺入微量杂质特性.

  (3)超导现象:当温度降低到绝对零度附近时,某些材料的电阻率突然减小到零,这种现象叫超导现象,处于这种状态的物体叫超导体。

高中物理知识点总结3

  怎么才能学好物理

  1、改变观念

  和高中物理相比,初中物理知识相对来说还是比较浅显易懂的,并且内容也不算是很多,也更容易掌握一些。但是能学好初中物理,不见得就能学好高中物理了。如果对于学习物理的兴趣没有培养起来,再加上没有好的学习方法,学习高中物理简直就是难上加难。所以想要学好高中物理,首先就需要改变观念,应该对自己有个正确的认识,从头开始。

  2、培养对物理的兴趣

  兴趣是最好的老师,想要学好高中物理就要对物理这门学科充满兴趣。那么,怎么培养学习物理的兴趣呢?物理是一门和生活紧密相关的学科,理科生应该在平时的时候多注意物理与日常生活、生产和现代科技密切联系,息息相关的地方。甚至是将物理知识应用到实际生活中去,这样可以大大的激发学习物理的兴趣。

  物理复习技巧

  1.模型归类

  做过一定量的物理题目之后,会发现很多题目其实思考方法是一样的.,我们需要按物理模型进行分类,用一套方法解一类题目。例如宏观的行星运动和微观的电荷在磁场中的偏转都属于匀速圆周运动,关键都是找出什么力提供了向心力;此外还有杠杆类的题目,要想象出力矩平衡的特殊情况,还有关于汽车启动问题的考虑方法其实同样适用于起重机吊重物等等。物理不需要做很多题目,能够判断出物理模型,将方法对号入座,就已经成功了一半。

  2.解题规范

  高考越来越重视解题规范,体现在物理学科中就是文字说明。解一道题不是列出公式,得出答案就可以的,必须标明步骤,说明用的是什么定理,为什么能用这个定理,有时还需要说明物体在特殊时刻的特殊状态。这样既让老师一目了然,又有利于理清自己的思路,还方便检查,最重要的是能帮助我们在分步骤评分的评分标准中少丢几分。

  3.大胆猜想

  物理题目常常是假想出的理想情况,几乎都可以用我们学过的知识来解释,所以当看到一道题目的背景很陌生时,就像今年高考物理的压轴题,不要慌了手脚。在最后的20分钟左右的时间里要保持沉着冷静,根据给出的物理量和物理关系,把有关的公式都列出来,大胆地猜想磁场的势能与重力场的势能是怎样复合的,取最值的情况是怎样的,充分利用图像提供的变化规律和数据,在没有完全理解题目的情况下多得几分是完全有可能的。

高中物理知识点总结4

  电学是中考的重要内容,每年中考电学都有30多分,电学也是学生掌握比较不好的部分,中考的压轴题也都在电学。因此,复习好电学,将是取胜中考的关键。下面,我把我在电学复习上的一些做法和体会和大家一起探讨、交流。

  一、课标要求

  中考物理命题依据:《全日制义务教育物理课程标准(实验稿)》和《20xx年福建省初中毕业生学业考试大纲》为依据,结合我市初中物理教学实际情况进行命题。

  课标对电学的要求主要分布在电磁能、电和磁以及能量、能量的转化和转移。

  (一)电磁能

  1.从能量转化的角度认识电源和用电器的作用。(电学69)(括号标注为20xx年泉州市中考物理考试说明对应考点,下同)

  2.通过实验探究电流、电压和电阻的关系。理解欧姆定律,并能进行简单计算。(电学62、63)3.会读、会画简单的电路图。能连接简单的串联电路和并联电路。能说出生活、生产中采用简单串联或并联的实例。(电学58、59、60)

  4.会使用电流表和电压表。(电学61)

  5.理解电功率和电流、电压之间的关系,并能进行简单计算。能区分用电器的额定功率和实际功率。(电学66)

  6.通过实验探究,知道在电流一定时,导体消耗的电功率与导体的电阻成正比。(电学67、68)7.了解家庭电路和安全用电知识。有安全用电的意识。(电学64、65)

  (二)电和磁

  1.通过实验,探究通电螺线管外部磁场的方向。(电学70)

  2.通过实验,了解通电导线在磁场中会受到力的作用,力的方向与电流及磁场的方向都有关系。(电学71)

  3.通过实验,探究导体在磁场中运动时产生感应电流的条件。(电学73)4.知道光是电磁波。知道电磁波在真空中的传播速度。(信息、材料、与能量74)5.了解电磁波的应用及其对人类生活和社会发展的影响。(信息、材料、与能量75)

  (三)能量、能量的转化和转移

  1.结合实例认识功的概念。知道做功的过程就是能量转化或转移的过程。(力学26)2.结合实例理解功率的概念。了解功率在实际中的应用。(力学27、28)

  20xx年泉州市中考物理考试说明和课程标准的要求是一致的,容易理解,因此,可以把重点放在学习和研究泉州市中考物理考试说明上。

  20xx年泉州市初中毕业、升学考试物理考试说明(电学部分)

  考试内容58.会读、会画简单电路图。电59.能连接简单的串联电路和并联电路。路60.能说出生活、生产中采用简单串联或并联电路的实例。61.会使用电流表和电压表。探究电路62.通过实验,探究电流、电压和电阻的关系。63.理解欧姆定律,并能进行简单计算。64.了解家庭电路和安全用电知识。65.有安全用电的意识。要求BCACDBAD电电功率学66.理解电功率和电流、电压之间的关系,并能进行简单计算。能区分用电器的额定功率和实际功率。67.通过实验,探究在电流一定时,导体消耗的电功率与导体电阻的关系。68.知道在电流一定时,导体消耗的电功率与导体的电阻成正比。69.从能量转化的.角度认识电源和用电器的作用。BDAADADD电70.通过实验,探究通电螺线管外部磁场的方向。和71.通过实验,了解通电导线在磁场中会受到力的作用,力的方磁向与电流及磁场的方向都有关系。72.能用实验证实电磁相互作用。73.通过实验,探究导体在磁场中运动时产生感应电流的条件。

  二、中考呈现考题以填空、作图、选择、简答、实验与探究、计算题形式出现,总分30分左右,实验与探究、计算题所占分数较大。

  历届中考电学所占的分数05年中考28.5分06年中考31.5分07年中考32分

  三、中考预期

  预期08年的中考,电学考试的内容会保持相对稳定,稳中有变。欧姆定律、电功、电功率、电流表和电压表以及滑动变阻器的使用仍是考试的重点。07年未出现的考点,今年很有可能考,07年出现的一些考点,今年会变化考试题型考,比如,把选择题变成填空题。当然,这只是预期,我们要做好充分、全面的复习。四、复习建议

  1、认真研究08年中考考试说明、历届(05-07年)中考试题、市质检卷、复习指南。考试说明是命题的依据之一;市质检卷是中考的“风向标”,从中可以感受今年中考的一些信息;从历届中考试题中可以找出中考命题的方向、规律和重点;复习指南是复习指导书。因此,必须认真学习和研究。

  2、重视对物理基础知识和基本技能的教学,加强物理知识与生活实际的联系。

  基础知识和基本技能是中考命题的重点内容。物理的基本规律和基本原理是学好物理的基础,在教学中,要注意物理概念、物理规律的本质特征,要注重知识的形成过程,培养学生从实验观察、分析和总结中形成物理要领和物理规律的能力。

  中考命题加强联系生活实际。物理源于生活,在教学中注意引导学生善于观察,发现生活中蕴涵的物理知识。坚持学以致用,加强理论联系实际,提高学生灵活运用物理知识分析解决问题的能力。同时,也能提高学生学习的兴趣。

  3、加强实验、科学探究和计算的教学,重视对实验方法和实验过程的教学。电学实验、计算题是中考的重点。

  历届中考电学实验、计算占、实验方法占的分数

  06年中考07年中考

  2

  实验10分11分计算12分14分实验方法3分实验考点:主要是测小灯泡电功率、小灯泡电阻。

  计算考点:主要是电功、电功率、欧姆定律、串、并联电路电流、电压的关系。

  在教学中,要注重观察能力、分析能力、操作能力、科学探究能力、科学方法和归纳能力的教学;重视电功、电功率、欧姆定律、串、并联电路电流、电压的关系的计算的教学。

  4、精选练习,加强审题、解题方法的指导。

  要针对考点和历届中考规律选择有代表性、难度适宜的试题,供学生练习。讲评练习要对审题和解题方法加强指导,培养学生良好的审题习惯,提高审题能力,加强学生解题规范化的训练,重视学生的物理语言表达能力的提高。

  5、激发兴趣,提高复习效率。

  在复习阶段,学生的学习负担重,学习压力大,整天做题,容易出现“复习疲劳综合症”。因此,在复习课上,要积极创设一些与教学内容密切相关的问题情境和联系生活实际的题目吸引学生的注意力,激发学生的复习兴趣;注意调整好学生的心理状态,把握节奏,愉快复习,提高复习效率。

  总之,应当在新的课程理念的指导下,认认真真地对待复习工作,在复习中充分理解改革与继承的关系,注意改变学科本位观念,既关注社会热点,也关注中考动向,科学规划,稳步推进,努力使复习工作取得更大的成效。谢谢大家!

高中物理知识点总结5

  弹力

  (1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的。

  (2)产生条件:

  ①直接接触;

  ②有弹性形变。

  (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体。在点面接触的情况下,垂直于面;

  在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面。

  ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等。

  ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆。

  (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解。弹簧弹力可由胡克定律来求解。

  胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx。k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m。

  1.电路的组成:电源、开关、用电器、导线。

  2.电路的三种状态:通路、断路、短路。

  3.电流有分支的是并联,电流只有一条通路的是串联。

  4.在家庭电路中,用电器都是并联的。

  5.电荷的定向移动形成电流(金属导体里自由电子定向移动的方向与电流方向相反)。

  6.电流表不能直接与电源相连,电压表在不超出其测量范围的情况下可以。

  7.电压是形成电流的原因。

  8.安全电压应低于24V。

  9.金属导体的电阻随温度的升高而增大。

  10.影响电阻大小的因素有:材料、长度、横截面积、温度(温度有时不考虑)。

  11.滑动变阻器和电阻箱都是靠改变接入电路中电阻丝的长度来改变电阻的。

  12.利用欧姆定律公式要注意I、U、R三个量是对同一段导体而言的。

  13.伏安法测电阻原理:R=伏安法测电功率原理:P=UI

  14.串联电路中:电压、电功和电功率与电阻成正比

  15.并联电路中:电流、电功和电功率与电阻成反比

  16."220V100W"的灯泡比"220V40W"的灯泡电阻小,灯丝粗。

  电路图画法:

  1、电势法(结点法)

  (1)把电路中的电势相等的结点标上同样的字母。

  (2)把电路中的结点从电源正极出发按电势由高到低排列。

  (3)把原电路中的电阻接到相应的结点之间。

  (4)把原电路中的电表接入到相应位置。

  2、分支法(切断法)

  (1)顺着电流方向逐级分析,如果没有接入电源或电流方向不明可假设电流方向。

  (2)每一支路的导体是串联关系。

  (3)用切断电路的方法帮助判断,当切断某部分电路,其它电路同时也被断路的与它是串联关系;其它电路是通路的是并联关系。

  三种产生电荷的方式:

  1、摩擦起电:

  (1)正点荷:用绸子摩擦过的玻璃棒所带电荷;

  (2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;

  (3)实质:电子从一物体转移到另一物体;

  2、接触起电:

  (1)实质:电荷从一物体移到另一物体;

  (2)两个完全相同的物体相互接触后电荷平分;

  (3)、电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和;

  3、感应起电:把电荷移近不带电的导体,可以使导体带电;

  (1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;

  (2)实质:使导体的电荷从一部分移到另一部分;

  (3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷

  高二必修一物理重点知识点

  速度、平均速度和瞬时速度

  (1)表示物体运动快慢的物理量,它等于位移s跟发生这段位移所用时间t的比值。即v=s/t。速度是矢量,既有大小也有方向,其方向就是物体运动的方向。在国际单位制中,速度的单位是(m/s)米/秒。

  (2)平均速度是描述作变速运动物体运动快慢的物理量。一个作变速运动的物体,如果在一段时间t内的位移为s,则我们定义v=s/t为物体在这段时间(或这段位移)上的平均速度。平均速度也是矢量,其方向就是物体在这段时间内的位移的方向。

  (3)瞬时速度是指运动物体在某一时刻(或某一位置)的速度。从物理含义上看,瞬时速度指某一时刻附近极短时间内的平均速度。瞬时速度的大小叫瞬时速率,简称速率。

  路程和位移

  (1)位移是表示质点位置变化的物理量。路程是质点运动轨迹的`长度。

  (2)位移是矢量,可以用以初位置指向末位置的一条有向线段来表示。因此,位移的大小等于物体的初位置到末位置的直线距离。路程是标量,它是质点运动轨迹的长度。因此其大小与运动路径有关。

  (3)一般情况下,运动物体的路程与位移大小是不同的。只有当质点做单一方向的直线运动时,路程与位移的大小才相等。图1—1中质点轨迹ACB的长度是路程,AB是位移S。

  (4)在研究机械运动时,位移才是能用来描述位置变化的物理量。路程不能用来表达物体的确切位置。比如说某人从O点起走了50m路,我们就说不出终了位置在何处。

  探究弹力

  1.产生形变的物体由于要恢复原状,会对与它接触的物体产生力的作用,这种力称为弹力。

  2.弹力方向垂直于两物体的接触面,与引起形变的外力方向相反,与恢复方向相同。

  绳子弹力沿绳的收缩方向;铰链弹力沿杆方向;硬杆弹力可不沿杆方向。

  弹力的作用线总是通过两物体的接触点并沿其接触点公共切面的垂直方向。

  3.在弹性限度内,弹簧弹力F的大小与弹簧的伸长或缩短量x成正比,即胡克定律。

  F=kx

  4.上式的k称为弹簧的劲度系数(倔强系数),反映了弹簧发生形变的难易程度。

  5.弹簧的串、并联:串联:1/k=1/k1+1/k2并联:k=k1+k2

  共点力的平衡条件

  1.共点力:物体受到的各力的作用线或作用线的延长线能相交于一点的力

  2.平衡状态:在共点力的作用下,物体保持静止或匀速直线运动的状态.

  说明:这里的静止需要二个条件,一是物体受到的合外力为零,二是物体的速度为零,仅速度为零时物体不一定处于静止状态,如物体做竖直上抛运动达到点时刻,物体速度为零,但物体不是处于静止状态,因为物体受到的合外力不为零.

  3.共点力作用下物体的平衡条件:合力为零,即0

  说明;

  ①三力汇交原理:当物体受到三个非平行的共点力作用而平衡时,这三个力必交于一点;

  ②物体受到N个共点力作用而处于平衡状态时,取出其中的一个力,则这个力必与剩下的(N-1)个力的合力等大反向。

  ③若采用正交分解法求平衡问题,则其平衡条件为:FX合=0,FY合=0;

  ④有固定转动轴的物体的平衡条件

高中物理知识点总结6

  1、大的物体不一定不能看成质点,小的物体不一定能看成质点。

  2、在时间轴上n秒时指的是n秒末。第n秒指的是一段时间,是第n个1秒。第n秒末和第n+1秒初是同一时刻。

  3、忽视位移的矢量性,只强调大小而忽视方向。

  4、物体做直线运动时,位移的大小不一定等于路程。

  5、位移也具有相对性,必须选一个参考系,选不同的参考系时,物体的位移可能不同。

  6、打点计时器在纸带上应打出轻重合适的小圆点,如遇到打出的是短横线,应调整一下振针距复写纸的高度,使之增大一点。

  7、使用计时器打点时,应先接通电源,待打点计时器稳定后,再释放纸带。

  8、使用电火花打点计时器时,应注意把两条白纸带正确穿好,墨粉纸盘夹在两纸带间;使用电磁打点计时器时,应让纸带通过限位孔,压在复写纸下面。

  9、"速度"一词是比较含糊的统称,在不同的语境中含义不同,一般指瞬时速率、平均速度、瞬时速度、平均速率四个概念中的一个,要学会根据上、下文辨明"速度"的含义。平常所说的"速度"多指瞬时速度,列式计算时常用的是平均速度和平均速率。

  10、着重理解速度的矢量性。有的同学受初中所理解的速度概念的影响,很难接受速度的方向,其实速度的方向就是物体运动的方向,而初中所学的"速度"就是现在所学的平均速率。

  11、平均速度不是速度的平均。

  12、平均速率不是平均速度的大小。

  13、物体的速度大,其加速度不一定大。

  14、物体的速度为零时,其加速度不一定为零。

  15、物体的速度变化大,其加速度不一定大。

  16、加速度的正、负仅表示方向,不表示大小。

  17、物体的加速度为负值,物体不一定做减速运动。

  18、物体的加速度减小时,速度可能增大;加速度增大时,速度可能减小。

  19、物体的速度大小不变时,加速度不一定为零。

  20、物体的加速度方向不一定与速度方向相同,也不一定在同一直线上。

  21、位移图象不是物体的运动轨迹。

  22、解题前先搞清两坐标轴各代表什么物理量,不要把位移图象与速度图象混淆。

  23、图象是曲线的不表示物体做曲线运动。

  24、人们得出"重的物体下落快"的错误结论主要是由于空气阻力的影响。

  25、严格地讲自由落体运动的物体只受重力作用,在空气阻力影响较小时,可忽略空气阻力的影响,近似视为自由落体运动。

  26、自由落体实验实验记录自由落体轨迹时,对重物的要求是"质量大、体积小",只强调"质量大"或"体积小"都是不确切的。

  27、自由落体运动中,加速度g是已知的,但有时题目中不点明这一点,我们解题时要充分利用这一隐含条件。

  28、自由落体运动是无空气阻力的理想情况,实际物体的运动有时受空气阻力的影响过大,这时就不能忽略空气阻力了,如雨滴下落的最后阶段,阻力很大,不能视为自由落体运动。

  29、自由落体加速度通常可取9.8m/s?或10m/s?,但并不是不变的,它随纬度和海拔高度的变化而变化。

  30、四个重要比例式都是从自由落体运动开始时,即初速度v0=0是成立条件,如果v0≠0则这四个比例式不成立。

  31、匀变速运动的各公式都是矢量式,列方程解题时要注意各物理量的方向。

  32、常取初速度v0的方向为正方向,但这并不是一定的',也可取与v0相反的方向为正方向。

  33、汽车刹车问题应先判断汽车何时停止运动,不要盲目套用匀减速直线运动公式求解。

  34、找准追及问题的临界条件,如位移关系、速度相等等。

  35、用速度图象解题时要注意图线相交的点是速度相等的点而不是相遇处。

  36、产生弹力的条件之一是两物体相互接触,但相互接触的物体间不一定存在弹力。

  37、某个物体受到弹力作用,不是由于这个物体的形变产生的,而是由于施加这个弹力的物体的形变产生的。

  38、压力或支持力的方向总是垂直于接触面,与物体的重心位置无关。

  39、胡克定律公式F=kx中的x是弹簧伸长或缩短的长度,不是弹簧的总长度,更不是弹簧原长。

  40、弹簧弹力的大小等于它一端受力的大小,而不是两端受力之和,更不是两端受力之差。

  41、杆的弹力方向不一定沿杆。

  42、摩擦力的作用效果既可充当阻力,也可充当动力。

  43、滑动摩擦力只以μ和N有关,与接触面的大小和物体的运动状态无关。

  44、各种摩擦力的方向与物体的运动方向无关。

  45、静摩擦力具有大小和方向的可变性,在分析有关静摩擦力的问题时容易出错。

  46、最大静摩擦力与接触面和正压力有关,静摩擦力与压力无关。

  47、画力的图示时要选择合适的标度。

  48、实验中的两个细绳套不要太短。

  49、检查弹簧测力计指针是否指零。

  50、在同一次实验中,使橡皮条伸长时结点的位置一定要相同。

  51、使用弹簧测力计拉细绳套时,要使弹簧测力计的弹簧与细绳套在同一直线上,弹簧与木板面平行,避免弹簧与弹簧测力计外壳、弹簧测力计限位卡之间有摩擦。

  52、在同一次实验中,画力的图示时选定的标度要相同,并且要恰当使用标度,使力的图示稍大一些。

  53、合力不一定大于分力,分力不一定小于合力。

  54、三个力的合力最大值是三个力的数值之和,最小值不一定是三个力的数值之差,要先判断能否为零。

  55、两个力合成一个力的结果是惟一的,一个力分解为两个力的情况不惟一,可以有多种分解方式。

  56、一个力分解成的两个分力,与原来的这个力一定是同性质的,一定是同一个受力物体,如一个物体放在斜面上静止,其重力可分解为使物体下滑的力和使物体压紧斜面的力,不能说成下滑力和物体对斜面的压力。

  57、物体在粗糙斜面上向前运动,并不一定受到向前的力,认为物体向前运动会存在一种向前的"冲力"的说法是错误的。

  58、所有认为惯性与运动状态有关的想法都是错误的,因为惯性只与物体质量有关。

  59、惯性是物体的一种基本属性,不是一种力,物体所受的外力不能克服惯性。

  60、物体受力为零时速度不一定为零,速度为零时受力不一定为零。

  61、牛顿第二定律 F=ma中的F通常指物体所受的合外力,对应的加速度a就是合加速度,也就是各个独自产生的加速度的矢量和,当只研究某个力产生加速度时牛顿第二定律仍成立。

  62、力与加速度的对应关系,无先后之分,力改变的同时加速度相应改变。

  63、虽然由牛顿第二定律可以得出,当物体不受外力或所受合外力为零时,物体将做匀速直线运动或静止,但不能说牛顿第一定律是牛顿第二定律的特例,因为牛顿第一定律所揭示的物体具有保持原来运动状态的性质,即惯性,在牛顿第二定律中没有体现。

  64、牛顿第二定律在力学中的应用广泛,但也不是"放之四海而皆准",也有局限性,对于微观的高速运动的物体不适用,只适用于低速运动的宏观物体。

  65、用牛顿第二定律解决动力学的两类基本问题,关键在于正确地求出加速度a,计算合外力时要进行正确的受力分析,不要漏力或添力。

  66、用正交分解法列方程时注意合力与分力不能重复计算。

  67、注意F合=ma是矢量式,在应用时,要选择正方向,一般我们选择合外力的方向即加速度的方向为正方向。

  68、超重并不是重力增加了,失重也不是失去了重力,超重、失重只是视重的变化,物体的实重没有改变。

  69、判断超重、失重时不是看速度方向如何,而是看加速度方向向上还是向下。

  70、有时加速度方向不在竖直方向上,但只要在竖直方向上有分量,物体也处于超、失重状态。

  71、两个相关联的物体,其中一个处于超(失)重状态,整体对支持面的压力也会比重力大(小)。

  72、国际单位制是单位制的一种,不要把单位制理解成国际单位制。

  73、力的单位牛顿不是基本单位而是导出单位。

  74、有些单位是常用单位而不是国际单位制单位,如:小时、斤等。

  75、进行物理计算时常需要统一单位。

  76、只要存在与速度方向不在同一直线上的合外力,物体就做曲线运动,与所受力是否为恒力无关。

  77、做曲线运动的物体速度方向沿该点所在的轨迹的切线,而不是合外力沿轨迹的切线。请注意区别。

  78、合运动是指物体相对地面的实际运动,不一定是人感觉到的运动。

  79、两个直线运动的合运动不一定是直线运动,两个匀速直线运动的合运动一定是匀速直线运动。两个匀变速直线运动的合运动不一定是匀变速直线运动。

  80、运动的合成与分解实际上就是描述运动的物理量的合成与分解,如速度、位移、加速度的合成与分解。

  81、运动的分解并不是把运动分开,物体先参与一个运动,然后再参与另一运动,而只是为了研究的方便,从两个方向上分析物体的运动,分运动间具有等时性,不存在先后关系。

  82、竖直上抛运动整体法分析时一定要注意方向问题,初速度方向向上,加速度方向向下,列方程时可以先假设一个正方向,再用正、负号表示各物理量的方向,尤其是位移的正、负,容易弄错,要特别注意。

  83、竖直上抛运动的加速度不变,故其v-t图象的斜率不变,应为一条直线。

  84、要注意题目描述中的隐蔽性,如"物体到达离抛出点5m处",不一定是由抛出点上升5m,有可能在下降阶段到达该处,也有可能在抛出点下方5m处。

  85、平抛运动公式中的时间t是从抛出点开始计时的,否则公式不成立。

  86、求平抛运动物体某段时间内的速度变化时要注意应该用矢量相减的方法。用平抛竖落仪研究平抛运动时结果是自由落体运动的小球与同时平抛的小球同时落地,说明平抛运动的竖直分运动是自由落体运动,但此实验不能说明平抛运动的水平分运动是匀速直线运动。

  87、并不是水平速度越大斜抛物体的射程就越远,射程的大小由初速度和抛射角度两因素共同决定。

  88、斜抛运动最高点的物体速度不等于零,而等于其水平分速度。

  89、斜抛运动轨迹具有对称性,但弹道曲线不具有对称性。

  90、在半径不确定的情况下,不能由角速度大小判断线速度大小,也不能由线速度大小判断角速度大小。

  91、地球上的各点均绕地轴做匀速圆周运动,其周期及角速度均相等,各点做匀速圆周运动的半径不同,故各点线速度大小不相等。

  92、同一轮子上各质点的角速度关系:由于同一轮子上的各质点与转轴的连线在相同的时间内转过的角度相同,因此各质点角速度相同。各质点具有相同的ω、T和n。

  93、在齿轮传动或皮带传动(皮带不打滑,摩擦传动中接触面不打滑)装置正常工作的情况下,皮带上各点及轮边缘各点的线速度大小相等。

  94、匀速圆周运动的向心力就是物体的合外力,但变速圆周运动的向心力不一定是合外力。

  95、当向心力有静摩擦力提供时,静摩擦力的大小和方向是由运动状态决定的。

  96、绳只能产生拉力,杆对球既可以产生拉力又可以产生压力,所以求作用力时,应先利用临界条件判断杆对球施力的方向,或先假设力朝某一方向,然后根据所求结果进行判断。

高中物理知识点总结7

  一、力学

  1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);

  2、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。

  同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。

  3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。

  4、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。

  5、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。

  6、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。

  7、17世纪,德国天文学家开普勒提出开普勒三大定律;

  8、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;

  9、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。10、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;

  俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。

  11、1957年10月,苏联发射第一颗人造地球卫星;

  1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。

  二、电磁学

  12、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律库仑定律,并测出了静电力常量k的值。

  13、16世纪末,英国人吉伯第一个研究了摩擦是物体带电的现象。18世纪中叶,美国人富兰克林提出了正、负电荷的概念。

  1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。

  14、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。

  15、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。16、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。

  17、1911年,荷兰科学家昂纳斯发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象超导现象。

  18、19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳定律。19、1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。

  20、法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向。

  21、荷兰物理学家洛伦兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛伦兹力)的观点。

  22、汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。23、1932年,美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子。(最大动能仅取决于磁场和D形盒直径,带电粒子圆周运动周期与高频电源的周期相同)24、1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律电磁感应定律。

  25、1834年,俄国物理学家楞次发表确定感应电流方向的定律楞次定律。

  26、1835年,美国科学家亨利发现自感现象(因电流变化而在电路本身引起感应电动势的现象),日光灯的工作原理即为其应用之一。

  三、热学

  27、1827年,英国植物学家布朗发现悬浮在水中的花粉微粒不停地做无规则运动的现象布朗运动。

  28、1850年,克劳修斯提出热力学第二定律的定性表述:不可能把热从低温物体传到高温物体而不产生其他影响,称为克劳修斯表述。次年开尔文提出另一种表述:不可能从单一热源取热,使之完全变为有用的功而不产生其他影响,称为开尔文表述。29、1848年开尔文提出热力学温标,指出绝对零度是温度的下限。

  30、19世纪中叶,由德国医生迈尔、英国物理学家焦尔、德国学者亥姆霍兹最后确定能量守恒定律。

  21、1642年,科学家托里拆利提出大气会产生压强,并测定了大气压强的值。四年后,帕斯卡的研究表明,大气压随高度增加而减小。

  1654年,为了证实大气压的存在,德国的马德堡市做了一个轰动一时的实验马德堡半球实验。

  四、波动学

  22、17世纪,荷兰物理学家惠更斯确定了单摆周期公式。周期是2s的单摆叫秒摆。23、1690年,荷兰物理学家惠更斯提出了机械波的波动现象规律惠更斯原理。24、奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象多普勒效应。

  五、光学

  25、1621年,荷兰数学家斯涅耳找到了入射角与折射角之间的规律折射定律。26、1801年,英国物理学家托马斯?杨成功地观察到了光的干涉现象。

  27、1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射泊松亮斑。28、1864年,英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场理论,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。

  29、1887年,德国物理学家赫兹用实验证实了电磁波的存在,并测定了电磁波的传播速度等于光速。30、1894年,意大利马可尼和俄国波波夫分别发明了无线电报,揭开无线电通信的新篇章。

  31、1800年,英国物理学家赫歇耳发现红外线;1801年,德国物理学家里特发现紫外线;

  1895年,德国物理学家伦琴发现X射线(伦琴射线),并为他夫人的手拍下世界上第一张X射线的人体照片。

  32、激光被誉为20世纪的“世纪之光”。

  六、波粒二象性

  33、1900年,德国物理学家普朗克为解释物体热辐射规律提出能量子假说:物质发射或吸收能量时,能量不是连续的(电磁波的发射和吸收不是连续的),而是一份一份的,每一份就是一个最小的能量单位,即能量子E=hν,把物理学带进了量子世界;

  受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律,因此获得诺贝尔物理奖。

  34、1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时康普顿效应,证实了光的粒子性。

  35、1913年,丹麦物理学家玻尔提出了自己的原子结构假说,最先得出氢原子能级表达式,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。

  36、1885年,瑞士的中学数学教师巴耳末总结了氢原子光谱的波长规律巴耳末系。37、1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;1927年美、英两国物理学家得到了电子束在金属晶体上的'衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高。

  七、相对论

  38、物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验相对论(高速运动世界),②热辐射实验量子论(微观世界);

  39、19世纪和20世纪之交,物理学的三大发现:X射线的发现,电子的发现,放射性的发现。

  40、1905年,爱因斯坦提出了狭义相对论,有两条基本原理:

  ①相对性原理不同的惯性参考系中,一切物理规律都是相同的;

  ②光速不变原理不同的惯性参考系中,光在真空中的速度一定是c不变。狭义相对论的其他结论:

  ①时间和空间的相对性长度收缩和动钟变慢(或时间膨胀)

  ②相对论速度叠加:光速不变,与光源速度无关;一切运动物体的速度不能超过光速,即光速是物质运动速度的极限。

  ③相对论质量:物体运动时的质量大于静止时的质量。

  41、爱因斯坦还提出了相对论中的一个重要结论质能方程式:E=mc2。

  八、原子物理学

  42、1858年,德国科学家普吕克尔发现了一种奇妙的射线阴极射线(高速运动的电子流)。43、1897年,汤姆生利用阴极射线管发现了电子,指出阴极射线是高速运动的电子流。说明原子可分,有复杂内部结构,并提出原子的枣糕模型。1906年,获得诺贝尔物理学奖。44、1909-1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10-15m。

  45、1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核有复杂的内部结构。天然放射现象:有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变快慢与原子所处的物理和化学状态无关。46、1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,发现了质子,并预言原子核内还有另一种粒子中子。47、1932年,卢瑟福学生查德威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖。48、1934年,约里奥-居里夫妇用α粒子轰击铝箔时,发现了正电子和人工放射性同位素。

  49、1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素钋(Po)镭(Ra)。

  50、1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。

  51、1942年,在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、水泥防护层等组成)。

  52、1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。人工控制核聚变的一个可能途径是:利用强激光产生的高压照射小颗粒核燃料。

  53、粒子分三大类:媒介子-传递各种相互作用的粒子,如:光子;轻子-不参与强相互作用的粒子,如:电子、中微子;

  强子-参与强相互作用的粒子,如:重子(质子、中子、超子)和介子。

高中物理知识点总结8

  1.电路的组成:电源、开关、用电器、导线。

  2.电路的三种状态:通路、断路、短路。

  3.电流有分支的是并联,电流只有一条通路的是串联。

  4.在家庭电路中,用电器都是并联的。

  5.电荷的定向移动形成电流(金属导体里自由电子定向移动的方向与电流方向相反)。

  6.电流表不能直接与电源相连,电压表在不超出其测量范围的情况下可以。

  7.电压是形成电流的原因。

  8.安全电压应低于24V。

  9.金属导体的`电阻随温度的升高而增大。

  10.影响电阻大小的因素有:材料、长度、横截面积、温度(温度有时不考虑)。

  11.滑动变阻器和电阻箱都是靠改变接入电路中电阻丝的长度来改变电阻的。

  12.利用欧姆定律公式要注意I、U、R三个量是对同一段导体而言的。

  13.伏安法测电阻原理:R=伏安法测电功率原理:P=UI

  14.串联电路中:电压、电功和电功率与电阻成正比

  15.并联电路中:电流、电功和电功率与电阻成反比

  16."220V100W"的灯泡比"220V40W"的灯泡电阻小,灯丝粗。

  1、电场能的基本性质:电荷在电场中移动,电场力要对电荷做功。

  2、电势φ

  (1)定义:电荷在电场中某一点的电势能Ep与电荷量的比值。

  (2)定义式:φ——单位:伏(V)——带正负号计算

  (3)特点:

  电势具有相对性,相对参考点而言。但电势之差与参考点的选择无关。

  电势一个标量,但是它有正负,正负只表示该点电势比参考点电势高,还是低。

  电势的大小由电场本身决定,与Ep和q无关。

  电势在数值上等于单位正电荷由该点移动到零势点时电场力所做的功。

  (4)电势高低的判断方法

  根据电场线判断:沿着电场线电势降低。φA>φB

  根据电势能判断:

  正电荷:电势能大,电势高;电势能小,电势低。

  负电荷:电势能大,电势低;电势能小,电势高。

  结论:只在电场力作用下,静止的电荷从电势能高的地方向电势能低的地方运动。

高中物理知识点总结9

  一、第一章静电场

  1、电荷量:电荷的多少叫电荷量,用字母Q或q表示。(元电荷常用符号e表示,e=1.6×10-19C)。

  自然界只存在两种电荷:正电荷和负电荷。同号电荷相互排斥,异号电荷相互吸引。

  2、点电荷:当本身线度比电荷间的距离小很多,研究相互作用时,该带电体的形状可忽略,相当于一个带电的点,叫点电荷。

  3、库仑定律:真空中两个静止的点电荷之间的作用力与这两个电荷所带电荷量的乘积成正比,与它们之间距离的平方成反比,作用力的方向沿着这两个点电荷的连线。公式:,N﹒m2/C2。

  4、电场力(静电力):电场对放入其中的电荷的作用力称为电场力。

  5、电场强度:放入电场中一点的电荷所受的电场力跟电荷量的比值。

  (1)公式:(N/C)

  (2)点电荷的场强公式:

  (3)场强的方向:正电荷(负电荷)受的电场力方向与该点场强方向相同(相反)。

  6、电场线:用来描述电场的可以模拟但不真实存在的线。

  7、电场线的性质:

  (1)电场线起始于正电荷或无穷远,终止于无穷远或负电荷;

  (2)任何两条电场线不会相交;

  (3)静电场中,电场线不形成闭合线;

  (4)电场线的疏密代表场强强弱。

  8、匀强电场:场强大小和方向都相同的电场叫匀强电场。电场线相互平行且均匀分布时表明是匀强电场。

  9、电势:电荷在电场中某一点的电势能与它电荷量的比值。

  公式:,10、等势面特点:

  (1)电场线与等势面垂直,(2)沿等势面移动电荷,静电力不做功。

  11、电势差:,(电势差的正负表示两点间电势的高低)

  12、电势差与静电力做功:

  表示A、B两点的电势差在数值上等于单位正电荷从A点移到B点,电场力所做的功。

  13、电场力做功与电势能的关系:

  当电场力做正功时,电势能减少;电场力做负功时,电势能增加。

  14、电势差与电场强度的'关系:在匀强电场中,沿电场线方向的两点间的电势差等于场强与这两点间距离的乘积;场强的大小等于沿场强方向每单位距离上的电势差;沿电场线的方向电势越来越低。

  15、

  (1)(定义式),(决定式)电容的单位是法拉(F)决定平行板电容器电容大小的因素是两极板的正对面积、两极板的距离以及两极板间的电介质。

  (2)对于平行板电容器有关的Q、E、U、C的讨论时要注意两种情况:Ⅰ、保持两板与电源相连,则电容器两极板间的电压U不变。Ⅱ、充电后断开电源,则带电量Q不变

  16、带电粒子在电场中运动:

  (1)带电粒子在电场中平衡。(二力平衡)

  (2)带电粒子的加速:动力学分析及功能关系分析:经常用

  (3)带电粒子的偏转:动力学分析:带电粒子以速度V0垂直于电场线方向飞入两带电平行板产生的匀强电场中,受到恒定的与初速度方向成900角的电场力作用而做匀变速曲线运动(类平抛运动)。

  常用到的公式:,,  二、第二章恒定电流

  1、通过导体横截面的电荷量:(元电荷)电流强度的定义:

  2、电源电动势:,(非静电力把正电荷从负极移送到正极所做功跟被移送的电荷量的比值)

  3、电阻串联、并联:

  串联特点:

  并联电路特点:

  4、

  (1)欧姆定律:

  (2)电功率:

  (3)闭合电路欧姆定律:(上图中R=R1+R2)路端电压:

  5、电源热功率:

  电源效率:

  电功:

  电热:

  电功率:

  (1)对于纯电阻电路:

  (2)对于非纯电阻电路:

  6、电阻定律:(ρ为导体的电阻率,R与导体材料性质、、导体横截面积、长度有关)

  三、第三章磁场

  1、安培力:磁场对电流的作用力。方向----用左手定则判定:伸开左手,使大拇指跟其余四个手指垂直,并且都跟手掌在一个平面内,把手放入磁场中,让磁感线垂直穿入手心,并使伸开的四指指向电流的方向,那么,拇指所指的方向,就是通电导线在磁场中的受力方向。

  2、磁感应强度:磁场中垂直于磁场方向的通电导线所受到的磁场力F与导线长度L、导线中电流I的乘积IL的比值,叫做通电导线所在位置的磁感应强度。条件:磁感应单位是特斯拉(T)

  3、洛仑兹力:

  (1)洛伦兹力对带电粒子永远不做功,带电粒子在匀强磁场中做匀速圆周运动。

  (2)B与方向垂直时,方向:左手定则,处理方法:匀速圆周运动的半径:,周期:

  4、磁通量:(适用),单位是韦伯(Wb)

高中物理知识点总结10

  一、三种产生电荷的方式:

  1、摩擦起电:

  (1)正点荷:用绸子摩擦过的玻璃棒所带电荷;

  (2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;

  (3)实质:电子从一物体转移到另一物体;

  2、接触起电:

  (1)实质:电荷从一物体移到另一物体;

  (2)两个完全相同的物体相互接触后电荷平分;

  (3)电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和;

  3、感应起电:把电荷移近不带电的导体,可以使导体带电;

  (1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;

  (2)实质:使导体的电荷从一部分移到另一部分;

  (3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷;

  4、电荷的基本性质:能吸引轻小物体;

  5、电荷守恒定律:电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。

  6、元电荷:一个电子所带的电荷叫元电荷,用e表示。

  7、e=1.6×10—19c;

  8、一个质子所带电荷亦等于元电荷;

  9、任何带电物体所带电荷都是元电荷的整数倍;

  二、库仑定律:真空中两个静止点电荷间的相互作用力,跟它们所带电荷量的乘积成正比,跟它们之间距离的二次方成反比,作用力的方向在它们的连线上。电荷间的这种力叫库仑力.

  1、计算公式:F=kQ1Q2/r2(k=9.0×109N。m2/kg2)

  2、库仑定律只适用于点电荷(电荷的体积可以忽略不计)

  3、库仑力不是万有引力;

  三、电场:电场是使点电荷之间产生静电力的一种物质。

  1、只要有电荷存在,在电荷周围就一定存在电场;

  2、电场的基本性质:电场对放入其中的电荷(静止、运动)有力的作用;这种力叫电场力;

  3、电场、磁场、重力场都是一种物质

  四、电场强度:放入电场中某点的电荷所受电场力F跟它的电荷量Q的比值叫该点的电场强度;

  1、定义式:E=F/q;E是电场强度;F是电场力;q是试探电荷;

  2、电场强度是矢量,电场中某一点的场强方向就是放在该点的正电荷所受电场力的方向(与负电荷所受电场力的方向相反)

  3、该公式适用于一切电场;

  4、点电荷的电场强度公式:E=kQ/r2

  五、电场的叠加:在空间若有几个点电荷同时存在,则空间某点的电场强度,为这几个点电荷在该点的电场强度的矢量和;解题方法:分别作出表示这几个点电荷在该点场强的有向线段,用平行四边形定则求出合场强;

  六、电场线:电场线是人们为了形象的描述电场特性而人为假设的线。

  1、电场线不是客观存在的线;

  2、电场线的'形状:电场线起于正电荷终于负电荷;G:用锯木屑观测电场线。DAT

  (1)只有一个正电荷:电场线起于正电荷终于无穷远;

  (2)只有一个负电荷:起于无穷远,终于负电荷;

  (3)既有正电荷又有负电荷:起于正电荷终于负电荷;

  3、电场线的作用:

  1)表示电场的强弱:电场线密则电场强(电场强度大);电场线疏则电场弱电场强度小);

  2)表示电场强度的方向:电场线上某点的切线方向就是该点的场强方向;

  4、电场线的特点:

  1)电场线不是封闭曲线;

  2)同一电场中的电场线不向交;

  七、匀强电场:电场强度的大小、方向处处相同的电场;匀强电场的电场线平行、且分布均匀;

  1、匀强电场的电场线是一簇等间距的平行线;

  2、平行板电容器间的电是匀强电场;

  八、电势差:电荷在电场中由一点移到另一点时,电场力所作的功WAB与电荷量q的比值叫电势差,又名电压。

  1、定义式:UAB=WAB/q;

  2、电场力作的功与路径无关;

  3、电势差又命电压,国际单位是伏特;

  九、电场中某点的电势,等于单位正电荷由该点移到参考点(零势点)时电场力作的功;

  1、电势具有相对性,和零势面的选择有关;

  2、电势是标量,单位是伏特V;

  3、电势差和电势间的关系:UAB=φA—φB;

  4、电势沿电场线的方向降低时,电场力要作功,则两点电势差不为零,就不是等势面;

  4、相同电荷在同一等势面的任意位置,电势能相同;原因:电荷从一电移到另一点时,电场力不作功,所以电势能不变;

  5、电场线总是由电势高的地方指向电势低的地方;

  6、等势面的画法:相另等势面间的距离相等;

  十、电场强度和电势差间的关系:在匀强电场中,沿场强方向的两点间的电势差等于场强与这两点的距离的乘积。

  1、数学表达式:U=Ed;

  2、该公式的使适用条件是,仅仅适用于匀强电场;

  3、d是两等势面间的垂直距离;

  十一、电容器:储存电荷(电场能)的装置。

  1、结构:由两个彼此绝缘的金属导体组成;

  2、最常见的电容器:平行板电容器;

  十二、电容:电容器所带电荷量Q与两电容器量极板间电势差U的比值;用“C”来表示。

  1、定义式:C=Q/U;

  2、电容是表示电容器储存电荷本领强弱的物理量;

  3、国际单位:法拉简称:法,用F表示

  4、电容器的电容是电容器的属性,与Q、U无关;

  十三、平行板电容器的决定式:C=εs/4πkd;(其中d为两极板间的垂直距离,又称板间距;k是静电力常数,k=9.0×109N。m2/c2;ε是电介质的介电常数,空气的介电常数最小;s表示两极板间的正对面积;)

  1、电容器的两极板与电源相连时,两板间的电势差不变,等于电源的电压;

  2、当电容器未与电路相连通时电容器两板所带电荷量不变;

  十四、带电粒子的加速:

  1、条件:带电粒子运动方向和场强方向垂直,忽略重力;

  2、原理:动能定理:电场力做的功等于动能的变化:W=Uq=1/2mvt2—1/2mv02;

  3、推论:当初速度为零时,Uq=1/2mvt2;

  4、使带电粒子速度变大的电场又名加速电场;

高中物理知识点总结11

  力学:

  牛顿运动定律的应用:合力为零时,加速度为零,速度大小和方向都不变;合力不为零时,加速度不为零,速度大小和方向都改变。

  物体运动状态的改变:速度大小改变或速度方向改变或速度大小和方向都改变。

  力的作用效果:改变物体的运动状态或改变物体的形状。

  冲量和动量:力和时间的乘积是冲量,物体的质量和速度的乘积是动量。

  动量守恒定律:系统不受外力或所受合外力为零时,系统内各个物体的.动量相等。

  功和能:物体沿着力的方向移动一段距离,力对物体做功;功是能量转化的量度。

  万有引力定律:两个物体之间的引力与它们质量的乘积成正比,与它们距离的平方成反比。

  热学:

  物体的内能:物体内部所有分子热运动的动能和分子势能的总和。

  热力学第一定律:外界对物体做的功和物体吸收的热量之和等于物体内能的增量。

  热力学第二定律:不可能把热从低温物体传到高温物体而不产生其他影响;不可能从单一热源取热使之完全转换为有用的功而不产生其他影响。

  电磁学:

  电流、电压、电阻、电容、电感等元件的基本性质和应用。

  交流电的产生和应用:交流电机的应用,变压器的工作原理等。

  电磁波的产生和应用:无线电波、微波、红外线、可见光、紫外线、X射线、gamma射线等。

  光学:

  光的直线传播、光的反射、光的折射和光的干涉等基本概念和应用。

  本影和半影的区别和判断方法。

  光在真空中和介质中的传播速度不同。

  光在介质中传播时,光的强度、颜色、波长等发生变化的原因和规律。

  量子物理学:

  量子态的概念和描述方法。

  量子力学的基本概念和规律,包括薛定谔方程等。

  量子力学的应用领域,例如半导体物理、原子分子物理等。

高中物理知识点总结12

  一、重力,基本相互作用

  1、力和力的图示

  2、力能改变物体运动状态

  3、力能力物体发生形变

  4、力是物体与物体之间的相互作用

  (1)施力物体

  (2)受力物体

  (3)力产生一对力

  5、力的三要素:大小,方向,作用点

  6、重力:由于地球吸引而受的力大小G=mg方向:竖直向下重心:重力的作用点均匀分布、形状规则物体:几何对称中心质量分布不均匀,由质量分布决定重心质量分部均匀,由形状决定重心

  7、四种基本作用

  (1)万有引力

  (2)电磁相互作用

  (3)强相互作用

  (4)弱相互作用

  二、弹力

  1、性质:接触力

  2、弹性形变:当外力撤去后物体恢复原来的形状

  3、弹力产生条件

  (1)挤压

  (2)发生弹性形变

  4、方向:与形变方向相反

  5、常见弹力

  (1)压力垂直于接触面,指向被压物体

  (2)支持力垂直于接触面,指向被支持物体

  (3)拉力:沿绳子收缩方向

  (4)弹簧弹力方向:可短可长沿弹簧方向与形变方向相反

  6、弹力大小计算(胡克定律)F=kx

  k劲度系数N/mx伸长量

  三、摩擦力产生条件:

  1、两个物体接触且粗糙

  2、有相对运动或相对运动趋势静摩擦力产生条件:

  1、接触面粗糙

  2、相对运动趋势

  静摩擦力方向:沿着接触面与运动趋势方向相反大小:0≤f≤Fmax滑动摩擦力产生条件:

  1、接触面粗糙

  2、有相对滑动大小:f=μN

  N相互接触时产生的弹力N可能等于G

  μ动摩擦因系数没有单位

  四、力的合成与分解方法:等效替代

  力的合成:求与两个力或多个力效果相同的一个力

  求合力方法:平行四边形定则(合力是以两分力为邻边的平行四边形对角线,对角线长度即合力的大小,方向即合力的'方向)合力与分力的关系

  1、合力可以比分力大,也可以比分力小

  2、夹角θ一定,θ为锐角,两分力增大,合力就增大

  3、当两个分力大小一定,夹角增大,合力就增大,夹角增大,合力就减小(0<θ<π)

  4、合力最大值F=F1+F2最小值F=|F1-F2|力的分解:已知合力,求替代F的两个力原则:分力与合力遵循平行四边形定则本质:力的合成的逆运算

  找分力的方法:

  1、确定合力的作用效果

  2、形变效果

  3、由分力,合力用平行四边形定则连接

  4、作图或计算(计算方法:余弦定理)

  五、受力分析步骤和方法

  1.步骤

  (1)研究对象:受力物体

  (2)隔离开受力物体

  (3)顺序:

  ①场力(重力,电磁力......)

  ②弹力:

  绳子拉力沿绳子方向

  轻弹簧压缩或伸长与形变方向相反轻杆可能沿杆,也可能不沿杆面与面接触优先垂直于面的

  ③摩擦力

  静摩擦力方向

  求2.假设

  滑动摩擦力方向与相对滑动方向相反或与相对速度相反

  ④其它力(题中已知力)

  (4)检验是否有施力物体

  六、摩擦力分析静摩擦力分析

  1、条件①接触且粗糙②相对运动趋势

  2、大小0≤f≤Fmax

  3、方法:

  ①假设法

  ②平衡法滑动摩擦力分析

  1、接触时粗糙

  2、相对滑动

  七、补充结论

  1.斜面倾角θ

  动摩擦因系数μ=tanθ物体在斜面上匀速下滑

  μ>tanθ物体保持静止μ<tanθ物体在斜面上加速下滑

  2.三力合力最小值

  若构成一个三角形则合力为0若不能则F=Fmax-(F1+F2)三力最大值三个力相加

高中物理知识点总结13

  高中物理的确难,实用口诀能帮忙。物理公式、规律主要通过理解和运用来记忆,本口诀也要通过理解,发挥韵调特点,能对高中物理重要知识记忆起辅助作用。

  一、运动的描述

  1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。物体位置的变化,准确描述用位移,运动快慢s比t,a用δv与t比。

  2.运用一般公式法,平均速度是简法,中间时刻速度法,初速度零比例法,再加几何图像法,求解运动好方法。自由落体是实例,初速为零a等g.竖直上抛知初速,上升最高心有数,飞行时间上下回,整个过程匀减速。中心时刻的速度,平均速度相等数;求加速度有好方,δs等at平方。

  3.速度决定物体动,速度加速度方向中,同向加速反向减,垂直拐弯莫前冲。

  二、力

  1.解力学题堡垒坚,受力分析是关键;分析受力性质力,根据效果来处理。

  2.分析受力要仔细,定量计算七种力;重力有无看

  提示,根据状态定弹力;先有弹力后摩擦,相对运动是依据;万有引力在万物,电场力存在定无疑;洛仑兹力安培力,二者实质是统一;相互垂直力最大,平行无力要切记。

  3.同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明;两力合力小和大,两个力成q角夹,平行四边形定法;合力大小随q变,只在最大最小间,多力合力合另边。

  多力问题状态揭,正交分解来解决,三角函数能化解。

  4.力学问题方法多,整体隔离和假设;整体只需看外力,求解内力隔离做;状态相同用整体,否则隔离用得多;即使状态不相同,整体牛二也可做;假设某力有或无,根据计算来定夺;极限法抓临界态,程序法按顺序做;正交分解选坐标,轴上矢量尽量多。

  三、牛顿运动定律

  1.f等ma,牛顿二定律,产生加速度,原因就是力。

  合力与a同方向,速度变量定a向,a变小则u可大,只要a与u同向。

  2.n、t等力是视重,mg乘积是实重;超重失重视视重,其中不变是实重;加速上升是超重,减速下降也超重;失重由加降减升定,完全失重视重零

  四、曲线运动、万有引力

  1.运动轨迹为曲线,向心力存在是条件,曲线运动速度变,方向就是该点切线。

  2.圆周运动向心力,供需关系在心里,径向合力提供足,需mu平方比r,mrw平方也需,供求平衡不心离。

  3.万有引力因质量生,存在于世界万物中,皆因天体质量大,万有引力显神通。卫星绕着天体行,快慢运动的卫星,均由距离来决定,距离越近它越快,距离越远越慢行,同步卫星速度定,定点赤道上空行。

  五、机械能与能量

  1.确定状态找动能,分析过程找力功,正功负功加一起,动能增量与它同。

  2.明确两态机械能,再看过程力做功,“重力”之外功为零,初态末态能量同。

  3.确定状态找量能,再看过程力做功。有功就有能转变,初态末态能量同。

  六、电场

  1.库仑定律电荷力,万有引力引场力,好像是孪生兄弟,kqq与r平方比。

  2.电荷周围有电场,f比q定义场强。kq比r2点电荷,u比d是匀强电场。

  电场强度是矢量,正电荷受力定方向。描绘电场用场线,疏密表示弱和强。

  场能性质是电势,场线方向电势降。场力做功是qu,动能定理不能忘。

  4.电场中有等势面,与它垂直画场线。方向由高指向低,面密线密是特点。

  七、恒定电流

  1.电荷定向移动时,电流等于q比t。自由电荷是内因,两端电压是条件。

  正荷流向定方向,串电流表来计量。电源外部正流负,从负到正经内部。

  2.电阻定律三因素,温度不变才得出,控制变量来论述,rl比s等电阻。

  电流做功uit,电热i平方rt。电功率,w比t,电压乘电流也是。

  3.基本电路联串并,分压分流要分明。复杂电路动脑筋,等效电路是关键。

  4.闭合电路部分路,外电路和内电路,遵循定律属欧姆。

  路端电压内压降,和就等电动势,除于总阻电流是。

  八、磁场

  1.磁体周围有磁场,n极受力定方向;电流周围有磁场,安培定则定方向。

  2.f比il是场强,φ等bs磁通量,磁通密度φ比s,磁场强度之名异。

  3.bil安培力,相互垂直要注意。

  4.洛仑兹力安培力,力往左甩别忘记。

  九、电磁感应

  1.电磁感应磁生电,磁通变化是条件。回路闭合有电流,回路断开是电源。

  感应电动势大小,磁通变化率知晓。

  2.楞次定律定方向,阻碍变化是关键。导体切割磁感线,右手定则更方便。

  3.楞次定律是抽象,真正理解从三方,阻碍磁通增和减,相对运动受反抗,自感电流想阻挡,能量守恒理应当。楞次先看原磁场,感生磁场将何向,全看磁通增或减,安培定则知i向。

  必修和选修物理知识点汇总

  十、交流电

  1.匀强磁场有线圈,旋转产生交流电。电流电压电动势,变化规律是弦线。

  中性面计时是正弦,平行面计时是余弦。

  2.nbsω是最大值,有效值用热量来计算。

  3.变压器供交流用,恒定电流不能用。

  理想变压器,初级ui值,次级ui值,相等是原理。

  电压之比值,正比匝数比;电流之比值,反比匝数比。

  运用变压比,若求某匝数,化为匝伏比,方便地算出。

  远距输电用,升压降流送,否则耗损大,用户后降压。

  十一、气态方程

  研究气体定质量,确定状态找参量。绝对温度用大t,体积就是容积量。

  压强分析封闭物,牛顿定律帮你忙。状态参量要找准,pv比t是恒量。

  十二、热力学定律

  1.第一定律热力学,能量守恒好感觉。内能变化等多少,热量做功不能少。

  正负符号要准确,收入支出来理解。对内做功和吸热,内能增加皆正值;对外做功和放热,内能减少皆负值。

  2.热力学第二定律,热传递是不可逆,功转热和热转功,具有方向性不逆。

  十三、机械振动

  1.简谐振动要牢记,o为起点算位移,回复力的方向指,始终向平衡位置,

  大小正比于位移,平衡位置u大极。

  2.o点对称别忘记,振动强弱是振幅,振动快慢是周期,一周期走4a路,单摆周期l比g,再开方根乘2p,秒摆周期为2秒,摆长约等长1米。

  到质心摆长行,单摆具有等时性。

  3.振动图像描方向,从底往顶是向上,从顶往底是下向;振动图像描位移,顶点底点大位移,正负符号方向指。

  十四、机械波

  1.左行左坡上,右行右坡上。峰点谷点无方向。

  2.顺着传播方向吧,从谷往峰想上爬,脚底总得往下蹬,上下振动迁不动。

  3.不同时刻的.图像,δt四分一或三,质点动向疑惑散,s等vt派用场。

  十五、光学

  1.自行发光是光源,同种均匀直线传。若是遇见障碍物,传播路径要改变。

  反射折射两定律,折射定律是重点。光介质有折射率,(它的)定义是正弦比值,还可运用速度比,波长比值也使然。

  2.全反射,要牢记,入射光线在光密。入射角大于临界角,折射光线无处觅。

  十六、物理光学

  1.光是一种电磁波,能产生干涉和衍射。衍射有单缝和小孔,干涉有双缝和薄膜。单缝衍射中间宽,干涉(条纹)间距差不多。小孔衍射明暗环,薄膜干涉用处多。它可用来测工件,还可制成增透膜。泊松亮斑是衍射,干涉公式要把握。〖选修3-4〗

  2.光照金属能生电,入射光线有极限。光电子动能大和小,与光子频率有关联。光电子数目多和少,与光线强弱紧相连。光电效应瞬间能发生,极限频率取决逸出功。

  十七、动量

  1.确定状态找动量,分析过程找冲量,同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明。

  2.确定状态找动量,分析过程找冲量,外力冲量若为零,初态末态动量同。

  十八、原子原子核

  1.原子核,中央站,电子分层围它转;向外跃迁为激发,辐射光子向内迁;光子能量hn,能级差值来计算。

  2.原子核,能改变,αβ两衰变。α粒是氦核,电子流是β射线。

  γ光子不单有,伴随衰变而出现。铀核分开是裂变,中子撞击是条件。

  裂变可造原子弹,还可用它来发电。轻核聚合是聚变,温度极高是条件。

  变可以造氢弹,还是太阳能量源;和平利用前景好,可惜至今未实现。

高中物理知识点总结14

  电势差

  电势差是衡量单位电荷在静电场中由于电势不同所产生的能量差的物理量。

  电场中两点的电势之差叫电势差,依教材要求,电势差都取绝对值,知道了电势差的绝对值,要比较哪个点的电势高,需根据电场力对电荷做功的正负判断,或者是由这两点在电场线上的位置判断。

  电流之所以能够在导线中流动,也是因为在电流中有着高电势和低电势之间的差别。这种差别叫电势差,也叫电压。换句话说。在电路中,任意两点之间的电位差称为这两点的电压。通常用字母V代表电压。

  电源是给用电器两端提供电压的装置。

  电压的大小可以用电压表(符号:V)测量。

  串联电路电压规律:

  串联电路两端总电压等于各部分电路两端电压和。

  公式:ΣU=U1+U2

  并联电路电压规律:

  并联电路各支路两端电压相等,且等于电源电压。

  公式:ΣU=U1=U2

  欧姆定律:U=IR(I为电流,R是电阻)但是这个公式只适用于纯电阻电路。

  串联电压之关系,总压等于分压和,U=U1+U2.

  并联电压之特点,支压都等电源压,U=U1=U2

  1、根据静电能吸引轻小物体的性质和同种电荷相排斥、异种电荷相吸引的原理,主要应用有:静电复印、静电除尘、静电喷漆、静电植绒,静电喷药等。

  2、利用高压静电产生的电场,应用有:静电保鲜、静电灭菌、作物种子处理等。

  3、利用静电放电产生的臭氧、无菌消毒等,雷电是自然界发生的大规模静电放电现象,可产生大量的臭氧,并可以使大气中的氮合成为氨,供给植物营养。

  4、防止静电的主要途径:

  (1)避免产生静电。如在可能情况下选用不容易产生静电的材料。

  (2)避免静电的积累。产生静电要设法导走,如增加空气湿度,接地等。

  电源和电流

  1、电流产生的`条件:

  (1)导体内有大量自由电荷(金属导体——自由电子;电解质溶液——正负离子;导电气体——正负离子和电子)

  (2)导体两端存在电势差(电压)

  (3)导体中存在持续电流的条件:是保持导体两端的电势差。

  2、电流的方向

  电流可以由正电荷的定向移动形成,也可以是负电荷的定向移动形成,也可以是由正负电荷同时定向移动形成。习惯上规定:正电荷定向移动的方向为电流的方向。

  说明:

  (1)负电荷沿某一方向运动和等量的正电荷沿相反方向运动产生的效果相同。金属导体中电流的方向与自由电子定向移动方向相反。

  (2)电流有方向但电流强度不是矢量。

  (3)方向不随时间而改变的电流叫直流;方向和强度都不随时间改变的电流叫做恒定电流。通常所说的直流常常指的是恒定电流。

高中物理知识点总结15

  力学部分:

  1、基本概念:

  力、合力、分力、力的平行四边形法则、三种常见类型的力、力的三要素、时间、时刻、位移、路程、速度、速率、瞬时速度、平均速度、平均速率、加速度、共点力平衡(平衡条件)、线速度、角速度、周期、频率、向心加速度、向心力、动量、冲量、动量变化、功、功率、能、动能、重力势能、弹性势能、机械能、简谐运动的位移、回复力、受迫振动、共振、机械波、振幅、波长、波速

  2、基本规律:

  匀变速直线运动的基本规律(12个方程);

  三力共点平衡的特点;

  牛顿运动定律(牛顿第一、第二、第三定律);

  万有引力定律;

  天体运动的基本规律(行星、人造地球卫星、万有引力完全充当向心力、近地极地同步三颗特殊卫星、变轨问题);

  动量定理与动能定理(力与物体速度变化的关系—冲量与动量变化的关系—功与能量变化的关系);

  动量守恒定律(四类守恒条件、方程、应用过程);

  功能基本关系(功是能量转化的量度)

  重力做功与重力势能变化的关系(重力、分子力、电场力、引力做功的特点);

  功能原理(非重力做功与物体机械能变化之间的关系);

  机械能守恒定律(守恒条件、方程、应用步骤);

  简谐运动的基本规律(两个理想化模型一次全振动四个过程五个量、简谐运动的对称性、单摆的振动周期公式);简谐运动的图像应用;

  简谐波的传播特点;波长、波速、周期的关系;简谐波的图像应用;

  3、基本运动类型:

  运动类型受力特点备注

  直线运动所受合外力与物体速度方向在一条直线上一般变速直线运动的受力分析

  匀变速直线运动同上且所受合外力为恒力1.匀加速直线运动

  2.匀减速直线运动

  曲线运动所受合外力与物体速度方向不在一条直线上速度方向沿轨迹的切线方向

  合外力指向轨迹内侧

  (类)平抛运动所受合外力为恒力且与物体初速度方向垂直运动的合成与分解

  匀速圆周运动所受合外力大小恒定、方向始终沿半径指向圆心

  (合外力充当向心力)一般圆周运动的受力特点

  向心力的受力分析

  简谐运动所受合外力大小与位移大小成正比,方向始终指向平衡位置回复力的受力分析

  4、基本:

  力的合成与分解(平行四边形、三角形、多边形、正交分解);

  三力平衡问题的处理方法(封闭三角形法、相似三角形法、多力平衡问题—正交分解法);

  对物体的受力分析(隔离体法、依据:力的产生条件、物体的运动状态、注意静摩擦力的分析方法—假设法);

  处理匀变速直线运动的解析法(解方程或方程组)、图像法(匀变速直线运动的s-t图像、v-t图像);

  解决动力学问题的三大类方法:牛顿运动定律结合运动学方程(恒力作用下的宏观低速运动问题)、动量、能量(可处理变力作用的问题、不需考虑中间过程、注意运用守恒观点);

  针对简谐运动的对称法、针对简谐波图像的描点法、平移法

  5、常见题型:

  合力与分力的关系:两个分力及其合力的大小、方向六个量中已知其中四个量求另外两个量。

  斜面类问题:(1)斜面上静止物体的受力分析;(2)斜面上运动物体的受力情况和运动情况的分析(包括物体除受常规力之外多一个某方向的力的分析);(3)整体(斜面和物体)受力情况及运动情况的分析(整体法、个体法)。

  动力学的两大类问题:(1)已知运动求受力;(2)已知受力求运动。

  竖直面内的圆周运动问题:(注意向心力的分析;绳拉物体、杆拉物体、轨道内侧外侧问题;最高点、最低点的特点)。

  人造地球卫星问题:(几个近似;黄金变换;注意公式中各物理量的物理意义)。

  动量机械能的综合题:

  (1)单个物体应用动量定理、动能定理或机械能守恒的题型;

  (2)系统应用动量定理的题型;

  (3)系统综合运用动量、能量观点的题型:

  ①碰撞问题;

  ②爆炸(反冲)问题(包括静止原子核衰变问题);

  ③滑块长木板问题(注意不同的初始条件、滑离和不滑离两种情况、四个方程);

  ④子弹射木块问题 高中英语;

  ⑤弹簧类问题(竖直方向弹簧、水平弹簧振子、系统内物体间通过弹簧相互作用等);

  ⑥单摆类问题:

  ⑦工件皮带问题(水平传送带,倾斜传送带);

  ⑧人车问题;人船问题;人气球问题(某方向动量守恒、平均动量守恒);

  机械波的图像应用题:

  (1)机械波的传播方向和质点振动方向的互推;

  (2)依据给定状态能够画出两点间的基本波形图;

  (3)根据某时刻波形图及相关物理量推断下一时刻波形图或根据两时刻波形图求解相关物理量;

  (4)机械波的干涉、衍射问题及声波的多普勒效应。

  电磁学部分:

  1、基本概念:

  电场、电荷、点电荷、电荷量、电场力(静电力、库仑力)、电场强度、电场线、匀强电场、电势、电势差、电势能、电功、等势面、静电屏蔽、电容器、电容、电流强度、电压、电阻、电阻率、电热、电功率、热功率、纯电阻电路、非纯电阻电路、电动势、内电压、路端电压、内电阻、磁场、磁感应强度、安培力、洛伦兹力、磁感线、电磁感应现象、磁通量、感应电动势、自感现象、自感电动势、正弦交流电的周期、频率、瞬时值、最大值、有效值、感抗、容抗、电磁场、电磁波的周期、频率、波长、波速

  2、基本规律:

  电量平分原理(电荷守恒)

  库伦定律(注意条件、比较-两个近距离的带电球体间的电场力)

  电场强度的三个表达式及其适用条件(定义式、点电荷电场、匀强电场)

  电场力做功的特点及与电势能变化的关系

  电容的定义式及平行板电容器的决定式

  部分电路欧姆定律(适用条件)

  电阻定律

  串并联电路的基本特点(总电阻;电流、电压、电功率及其分配关系)

  焦耳定律、电功(电功率)三个表达式的适用范围

  闭合电路欧姆定律

  基本电路的动态分析(串反并同)

  电场线(磁感线)的特点

  等量同种(异种)电荷连线及中垂线上的场强和电势的分布特点

  常见电场(磁场)的电场线(磁感线)形状(点电荷电场、等量同种电荷电场、等量异种电荷电场、点电荷与带电金属板间的电场、匀强电场、条形磁铁、蹄形磁铁、通电直导线、环形电流、通电螺线管)

  电源的三个功率(总功率、损耗功率、输出功率;电源输出功率的最大值、)

  电动机的三个功率(输入功率、损耗功率、输出功率)

  电阻的'伏安特性曲线、电源的伏安特性曲线(图像及其应用;注意点、线、面、斜率、截距的物理意义)

  安培定则、左手定则、楞次定律(三条表述)、右手定则

  电磁感应的判定条件

  感应电动势大小的计算:法拉第电磁感应定律、导线垂直切割磁感线

  通电自感现象和断电自感现象

  正弦交流电的产生原理

  电阻、感抗、容抗对交变电流的作用

  变压器原理(变压比、变流比、功率关系、多股线圈问题、原线圈串、并联用电器问题)

  3、常见仪器:

  示波器、示波管、电流计、电流表(磁电式电流表的原理)、电压表、定值电阻、电阻箱、滑动变阻器、电动机、电解槽、多用电表、速度选择器、质普仪、回旋加速器、磁流体发电机、电磁流量计、日光灯、变压器、自耦变压器。

  4、实验部分:

  (1)描绘电场中的等势线:各种静电场的模拟;各点电势高低的判定;

  (2)电阻的测量:①分类:定值电阻的测量;电源电动势和内电阻的测量;电表内阻的测量;②方法:伏安法(电流表的内接、外接;接法的判定;误差分析);欧姆表测电阻(欧姆表的使用方法、操作步骤、读数);半偏法(并联半偏、串联半偏、误差分析);替代法;*电桥法(桥为电阻、灵敏电流计、电容器的情况分析);

  (3)测定金属的电阻率(电流表外接、滑动变阻器限流式接法、螺旋测微器、游标卡尺的读数);

  (4)小灯泡伏安特性曲线的测定(电流表外接、滑动变阻器分压式接法、注意曲线的变化);

  (5)测定电源电动势和内电阻(电流表内接、数据处理:解析法、图像法);

  (6)电流表和电压表的改装(分流电阻、分压电阻阻值的计算、刻度的修改);

  (7)用多用电表测电阻及黑箱问题;

  (8)练习使用示波器;

  (9)仪器及连接方式的选择:①电流表、电压表:主要看量程(电路中可能提供的最大电流和最大电压);②滑动变阻器:没特殊要求按限流式接法,如有下列情况则用分压式接法:要求测量范围大、多测几组数据、滑动变阻器总阻值太小、测伏安特性曲线;

  (10)传感器的应用(光敏电阻:阻值随光照而减小、热敏电阻:阻值随温度升高而减小)

  5、常见题型:

  电场中移动电荷时的功能关系;

  一条直线上三个点电荷的平衡问题;

  带电粒子在匀强电场中的加速和偏转(示波器问题);

  全电路中一部分电路电阻发生变化时的电路分析(应用闭合电路欧姆定律、欧姆定律;或应用“串反并同”;若两部分电路阻值发生变化,可考虑用极值法);

  电路中连接有电容器的问题(注意电容器两极板间的电压、电路变化时电容器的充放电过程);

  通电导线在各种磁场中在磁场力作用下的运动问题;(注意磁感线的分布及磁场力的变化);

  通电导线在匀强磁场中的平衡问题;

  带电粒子在匀强磁场中的运动(匀速圆周运动的半径、周期;在有界匀强磁场中的一段圆弧运动:找圆心-画轨迹-确定半径-作辅助线-应用几何求解;在有界磁场中的运动时间);

  闭合电路中的金属棒在水平导轨或斜面导轨上切割磁感线时的运动问题;

  两根金属棒在导轨上垂直切割磁感线的情况(左右手定则及楞次定律的应用、动量观点的应用);

  带电粒子在复合场中的运动(正交、平行两种情况):

  ①.重力场、匀强电场的复合场;

  ②.重力场、匀强磁场的复合场;

  ③.匀强电场、匀强磁场的复合场;

  ④.三场合一。

【高中物理知识点总结】相关文章:

高中物理知识点总结04-02

高中物理的知识点总结02-07

高中物理知识点的总结06-13

高中物理知识点总结07-11

高中物理知识点总结04-19

高中物理知识点总结优秀05-25

高中物理知识点总结[必备]07-19

高中物理知识点总结15篇11-05

高中物理必修一知识点总结03-08

高中物理必修一知识点总结07-28