物理实验报告

时间:2022-07-21 10:45:43 实验报告 我要投稿

物理实验报告汇编15篇

  随着社会一步步向前发展,大家逐渐认识到报告的重要性,我们在写报告的时候要注意涵盖报告的基本要素。我们应当如何写报告呢?下面是小编收集整理的物理实验报告,欢迎大家借鉴与参考,希望对大家有所帮助。

物理实验报告汇编15篇

物理实验报告1

  重力加速度的测定

  一、实验任务

  精确测定银川地区的重力加速度

  二、实验要求

  测量结果的相对不确定度不超过5%

  三、物理模型的建立及比较

  初步确定有以下六种模型方案:

  方法一、用打点计时器测量

  所用仪器为:打点计时器、直尺、带钱夹的铁架台、纸带、夹子、重物、学生电源等.

  利用自由落体原理使重物做自由落体运动.选择理想纸带,找出起始点0,数出时间为t的p点,用米尺测出op的距离为h,其中t=0.02秒×两点间隔数.由公式h=gt2/2得g=2h/t2,将所测代入即可求得g.

  方法二、用滴水法测重力加速度

  调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2.

  方法三、取半径为r的玻璃杯,内装适当的液体,固定在旋转台上.旋转台绕其对称轴以角速度ω匀速旋转,这时液体相对于玻璃杯的形状为旋转抛物面

  重力加速度的计算公式推导如下:

  取液面上任一液元a,它距转轴为x,质量为m,受重力mg、弹力n.由动力学知:

  ncosα-mg=0 (1)

  nsinα=mω2x (2)

  两式相比得tgα=ω2x/g,又 tgα=dy/dx,∴dy=ω2xdx/g,

  ∴y/x=ω2x/2g. ∴ g=ω2x2/2y.

  .将某点对于对称轴和垂直于对称轴最低点的直角坐标系的坐标x、y测出,将转台转速ω代入即可求得g.

  方法四、光电控制计时法

  调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2.

  方法五、用圆锥摆测量

  所用仪器为:米尺、秒表、单摆.

  使单摆的摆锤在水平面内作匀速圆周运动,用直尺测量出h(见图1),用秒表测出摆锥n转所用的时间t,则摆锥角速度ω=2πn/t

  摆锥作匀速圆周运动的向心力f=mgtgθ,而tgθ=r/h所以mgtgθ=mω2r由以上几式得:

  g=4π2n2h/t2.

  将所测的n、t、h代入即可求得g值.

  方法六、单摆法测量重力加速度

  在摆角很小时,摆动周期为:

  则

  通过对以上六种方法的比较,本想尝试利用光电控制计时法来测量,但因为实验室器材不全,故该方法无法进行;对其他几种方法反复比较,用单摆法测量重力加速度原理、方法都比较简单且最熟悉,仪器在实验室也很齐全,故利用该方法来测最为顺利,从而可以得到更为精确的值。

  四、采用模型六利用单摆法测量重力加速度

  摘要:

  重力加速度是物理学中一个重要参量。地球上各个地区重力加速度的数值,随该地区的地理纬度和相对海平面的高度而稍有差异。一般说,在赤道附近重力加速度值最小,越靠近南北两极,重力加速度的值越大,最大值与最小值之差约为1/300。研究重力加速度的分布情况,在地球物理学中具有重要意义。利用专门仪器,仔细测绘各地区重力加速度的分布情况,还可以对地下资源进行探测。

  伽利略在比萨大教堂内观察一个圣灯的缓慢摆动,用他的脉搏跳动作为计时器计算圣灯摆动的时间,他发现连续摆动的圣灯,其每次摆动的时间间隔是相等的,与圣灯摆动的幅度无关,并进一步用实验证实了观察的结果,为单摆作为计时装置奠定了基础。这就是单摆的等时性原理。

  应用单摆来测量重力加速度简单方便,因为单摆的振动周期是决定于振动系统本身的性质,即决定于重力加速度g和摆长l,只需要量出摆长,并测定摆动的周期,就可以算出g值。

  实验器材:

  单摆装置(自由落体测定仪),钢卷尺,游标卡尺、电脑通用计数器、光电门、单摆线

  实验原理:

  单摆是由一根不能伸长的轻质细线和悬在此线下端体积很小的重球所构成。在摆长远大于球的直径,摆锥质量远大于线的质量的条件下,将悬挂的小球自平衡位置拉至一边(很小距离,摆角小于5°),然后释放,摆锥即在平衡位置左右作周期性的往返摆动,如图2-1所示。

  f =p sinθ

  f

  θ

  t=p cosθ

  p = mg

  l

  图2-1 单摆原理图

  摆锥所受的力f是重力和绳子张力的合力,f指向平衡位置。当摆角很小时(θ<5°),圆弧可近似地看成直线,f也可近似地看作沿着这一直线。设摆长为l,小球位移为x,质量为m,则

  sinθ=

  f=psinθ=-mg =-m x (2-1)

  由f=ma,可知a=- x

  式中负号表示f与位移x方向相反。

  单摆在摆角很小时的运动,可近似为简谐振动,比较谐振动公式:a= =-ω2x

  可得ω=

  于是得单摆运动周期为:

  t=2π/ω=2π (2-2)

  t2= l (2-3)

  或 g=4π2 (2-4)

  利用单摆实验测重力加速度时,一般采用某一个固定摆长l,在多次精密地测量出单摆的周期t后,代入(2-4)式,即可求得当地的重力加速度g。

  由式(2-3)可知,t2和l之间具有线性关系, 为其斜率,如对于各种不同的摆长测出各自对应的周期,则可利用t2—l图线的斜率求出重力加速度g。

  试验条件及误差分析:

  上述单摆测量g的方法依据的公式是(2-2)式,这个公式的成立是有条件的,否则将使测量产生如下系统误差:

  1. 单摆的摆动周期与摆角的关系,可通过测量θ<5°时两次不同摆角θ1、θ2的周期值进行比较。在本实验的测量精度范围内,验证出单摆的t与θ无关。

  实际上,单摆的周期t随摆角θ增加而增加。根据振动理论,周期不仅与摆长l有关,而且与摆动的角振幅有关,其公式为:

  t=t0[1+( )2sin2 +( )2sin2 +……]

  式中t0为θ接近于0o时的周期,即t0=2π

  2.悬线质量m0应远小于摆锥的质量m,摆锥的半径r应远小于摆长l,实际上任何一个单摆都不是理想的,由理论可以证明,此时考虑上述因素的影响,其摆动周期为:

  3.如果考虑空气的浮力,则周期应为:

  式中t0是同一单摆在真空中的摆动周期,ρ空气是空气的密度,ρ摆锥 是摆锥的密度,由上式可知单摆周期并非与摆锥材料无关,当摆锥密度很小时影响较大。

  4.忽略了空气的粘滞阻力及其他因素引起的摩擦力。实际上单摆摆动时,由于存在这些摩擦阻力,使单摆不是作简谐振动而是作阻尼振动,使周期增大。

物理实验报告2

  器材

  找一个底面很平的容器,让一个蜡烛头紧贴在容器底部,再往容器里倒水,蜡烛头并不会浮起来;轻轻地把蜡烛头拨倒,它立刻就会浮起来。

  可见,当物体与容器底部紧密接触时,两个接触面间就没有液体渗入,物体的下表面不再受液体对它向上的压强,液体对它就失去了向上托的力,浮力当然随之消失了。

  现在,你能提出为潜艇摆脱困境的措施了吗?

  “浮力是怎样产生的”,学生对“浮力就是液体对物体向上的压力和向下的压力之差”这一结论是可以理解的,但却难以相信,因此做好浮力消失的实验是攻克这一难点的关键,下面介绍两种简便方法。

  [方法1]

  器材:大小适当的玻璃漏斗(化学实验室有)一个、乒乓球一只、红水一杯。

  步骤:

  (1)将乒乓球有意揿入水中,松手后乒乓球很快浮起。

  (2)用手托住漏斗(喇叭口朝上,漏斗柄夹在中指和无名指之间),将乒乓球放入其中,以大拇指按住乒乓球,将水倒入漏斗中,松开拇指,可见乒乓球不浮起,(这时漏斗柄下口有水向下流,这是因为乒乓球与漏斗间不太密合)。

  (3)用手指堵住出水口,可见漏斗柄中水面逐渐上升,当水面升至乒乓球时,乒乓球迅即上浮。(若漏斗柄下口出水过快,可在乒乓球与漏斗接触处垫一圈棉花,这样可以从容地观察水在漏斗柄中上升的情况。)

  [方法2]

  器材:透明平底塑料桶(深度10cm左右,口径宜大些,便于操作)一只、底面基本平整的木块(如象棋子、积木、保温瓶塞等)一个、筷子一根、水一杯。

  制作小孔桶:取一铁扦在酒精灯上烧红,在塑料桶底面中央穿一小孔、孔径1cm左右,用砂纸将孔边磨平即成一小孔桶。

  步骤:

  (1)将木块有意揿入水中,松手后木块很快浮起。

  (2)将木块平整的一面朝下放入小孔桶中并遮住小孔,用筷子按住木块,向桶中倒水。移去筷子,可见木块不浮起。(这时小孔处有水向下滴,这是因为木块与桶的接触面之间不很密合)。

  (3)用手指堵住小孔,木块立即上浮。

  上述两例针对实际中物体的表面不可能绝对平滑这一事实,巧妙地利用“小孔渗漏”使水不在物体下面存留,从而使物体失去液体的向上的压力,也就失去了浮力,结果本应浮在水面上的乒乓球和木块却被牢牢地钉在了水底,不能不令学生叹服。接着步骤(3)又魔术般地使浮力再现,更令学生情绪高涨,跃跃欲试。

  组成串联电路和并联电路实验报告

  一、实验目的:掌握_____________、______________的连接方式。

  二、实验器材: __________、__________、__________、__________、___________。 三、步 骤: 1.组成串联电路

  A.按图1-1的电路图,先用铅笔将图1-2中的电路元件,按电路图中的顺序连成实物 电路图(要求元件位置不动,并且导线不能交叉)。

  B.按图1-1的电路图接好电路,闭合和断开开关,观察开关是同时控制两个灯泡,还 是只控制其中一个灯光泡.

  观察结果:__________________________________________________________ C.把开关改接在L1和L2之间,重做实验B;再改接到L2和电池负极之间,再重做实验B. 观察开关的控制作用是否改变了,并分别画出相应的电路图.

  电路图 电路图

  观察结果:___________________________ 观察结果:__________________________

  _______________________________. ______________________________. 2.组成并联电路

  A.画出由两盏电灯L1和L2组成的并联电路图,要求开关S接在干路上,开关S1和S2分 别接在两个支路上,并按电路图用铅笔连接1-3

  的实物电路图.

  电路图

  B.按电路图在实物上连接并联电路,然后进行下述实验和观察:

  a. 闭合S1和S2,再闭合或断开干路开关S,观察开关S控制哪个灯泡.

  观察结果:____________________________________________________________

  b. 闭合S和S2,再闭合或断开干路开关S1,观察开关S1控制哪个灯泡. 观察结果:____________________________________________________________

  c. 闭合S和S1,再闭合或断开干路开关S2,观察开关S2控制哪个灯泡.

  观察结果:____________________________________________________________ [结论]

  1.在串联电路里开关控制____________用电器;如果开关的位置改变了,它的控制作 用_________.

  2.在并联电路干路里的开关控制__________________用电器;支路中的开关只能控制 _______________用电器.

物理实验报告3

  一、实验目的

  1、学会用BET法测定活性碳的比表面的方法。

  2、了解BET多分子层吸附理论的基本假设和BET法测定固体比表面积的基本原理。

  3、掌握BET法固体比表面的测定方法及掌握比表面测定仪的工作原理和相关测定软件的操作。

  二、实验原理

  气相色谱法是建立在BET多分子层吸附理论基础上的一种测定多孔物质比表面的方式,常用BET公式为:)-1+P(C-1)/P0VmC上式表述恒温条件下,吸附量与吸附质相对压力之间的关系.式中V是平衡压力为P时的吸附量,P0为实验温度时的气体饱和蒸汽压,Vm是第一层盖满时的吸附量,C为常数.因此式包含Vm和C两个常数,也称BET二常数方程.它将欲求量Vm与可测量的参数C,P联系起来.上式是一个一般的直线方程,如果服从这一方程,则以P/[V(P0-P)]对P/P0作图应得一条直线,而由直线得斜率(C-1)/VmC和直线在纵轴上得截据1/VmC就可求得Vm.则待测样品得比表面积为:S=VmNAσA/(22400m)其中NA为阿伏加德罗常数。m为样品质量(单位:g)。σm为每一个被吸附分子在吸附剂表面上所占有得面积,σm的值可以从在液态是的密堆积(每1分子有12个紧邻分子)计算得到.计算时假定在表面上被吸附的分子以六方密堆积的方式排列,对整个吸附层空间来说,其重复单位为正六面体,据此计算出常用的吸附质N2的σm=0.162nm2.现在在液氮温度下测定氮气的吸附量的方法是最普遍的方法,国际公认的σm的值是0.162nm2.本实验通过计算机控制色谱法测出待测样品所具有的表面积。

  三、实验试剂和仪器

  比表面测定仪,液氮,高纯氮,氢气.皂膜流量计,保温杯。

  四、实验步骤

  (一)准备工作

  1、按逆时针方向将比表面测定仪面板上氮气稳压阀和氢气稳压阀旋至放松位置(此时气路处于关闭状态)。

  2、将氮气钢瓶上的减压阀按逆时针方向旋至放松位置(此时处于关闭状态),打开钢瓶主阀,然后按顺时针方向缓慢打开减压阀至减压表压力为0.2MPa,同法打开氢气钢瓶(注意钢瓶表头的正面不许站人,以免万一表盘冲出伤人)。

  3、按顺时针方向缓慢打开比表面仪面板上氮气稳压阀和氢气稳压阀至气体压力为0.1MPa。

  4、将皂膜流量计与仪器面板上放空1口连接,将氮气阻力阀下方的1号拉杆拉出,测量氮气的流速,用氮气阻力阀调节氮气的流速为9ml/min,然后将1号拉杆推入。

  5、将皂膜流量计与仪器面板上放空2口连接,将氢气阻力阀下方的2号拉杆拉出,测量氢气的流速,用氢气阻力阀调节氢气的流速为36ml/min,然后将2号拉杆推入。

  6、打开比表面测定仪主机面板上的电源开关,调节电流调节旋钮至桥路电流为120mA,启电脑,双击桌面上Pioneer图标启动软件.观察基线。

  (二)测量工作

  1、将液氮从液氮钢瓶中到入保温杯中(液面距杯口约2cm,并严格注意安全),待样品管冷却后,用装有液氮的保温杯套上样品管,并将保温杯固定好.观察基线走势,当出现吸附峰,然后记录曲线返回基线后,击调零按钮和测量按钮,然后将保温杯从样品管上取下,观察脱附曲线.当桌面弹出报告时,选择与之比较的标准参数,然后记录(打印)结果(若不能自动弹出报告,则击手切按钮,在然后在谱图上选取积分区间,得到报告结果).重复该步骤平行测量三次,取平均值为样品的比表面积。

  2、实验完成后,按顺序。

  (1)关闭测量软件。

  (2)电脑。

  (3)将比表面仪面板上电流调节旋钮调节至电流为80mA后,关闭电源开关。

  (4)关闭氢气钢瓶和氮气钢瓶上的主阀门(注意勿将各减压阀和稳压阀关闭)。

  (5)将插线板电源关闭.

  操作注意事项

  1、比表面测定仪主机板上的粗调,细调和调池旋钮已固定,不要再动。

  2、打开钢瓶时,表头正面不要站人,以免气体将表盘冲出伤人。

  3、使用液氮时要十分小心,不可剧烈震荡保温杯,也不要将保温杯盖子盖紧。

  4、将保温杯放入样品管或者取下时动作要缓慢,以免温度变化太快使样品管炸裂。

  5、关闭钢瓶主阀时,不可将各减压阀关闭。

  五、数据记录及处理

  样品序号重量(mg)

  表面积(m2/g)

  峰面积(m2/g)

  标准样品702001660630

  样品170199.2411626622

  样品270198.6461621763

  样品均值70198.9441624192.5

  样品表面积的平均值为(199.241+198.646)/2=198.944m2/g

  相对误差为:(198.944-200.00)/200.00=-0.0078)

  六、误差分析

  1、调零时出现问题,出峰时,基线没有从零开始,然后处理不当。

  2、取出装有液氮的保温杯时,基线还未开始扫描。

  3、脱附时温度较低,出现拖尾.通常认为滞后现象是由多孔结构造成,而且大多数情况下脱附的热力学平衡更完全。

  七、注意事项

  1、打开钢瓶时钢瓶表头的正面不许站人,以免表盘冲出伤人。

  2、液氮时要十分小心,切不可剧烈震荡保温杯也不可将保温杯盖子盖紧,注意开关阀门,旋纽的转动方向。

  3、钢瓶主阀时,注意勿将各减压阀和稳压阀关闭。

  4、测量时注意计算机操作:在吸附时不点测量按纽,当吸附完毕拿下液氮准备脱附时再点调零,测量,进入测量吸附量的阶段。

  5、严格按照顺序关闭仪器。

  6、ET公式只适用于比压约在所不惜.0.05-0.35之间,这是因为在推导公式时,假定是多层的物理吸附,当比压小于0.05时,压力太小,建立不起多层物理吸附,甚至连单分子层吸附也未形成,表面的不均匀性就显得突出。在比压大于0.35时,由于毛细凝聚变得显著起来,因而破坏了多层物理吸附平衡。

物理实验报告4

  自然界中,有一种很有趣的现象叫共振。俄罗斯横跨伏尔加河伏尔加格勒市的大桥全长154米,20xx年5月22日,大桥路面突然开始蠕动,类似于波浪形,并发出震耳欲聋的声音,正在大桥上行驶的车辆在滚动中跳动。这个有趣而又有点危险的现象就是由于共振引起的。

  共振是指一个物理系统在特定频率下,以最大振幅做振动的情形。共振在声学中亦称“共鸣”。

  我们在实验室中,可以通过“耦合摆球”的实验来演示这个现象及研究影响它的因素。

  操作步骤:选中右侧第一个单摆,使其摆动起来,经过几个周期后,看到与其摆长相等的一单摆在它的影响下振幅达到最大,而其他单摆几乎不摆动;让摆动停止,在选中右侧第二个单摆,使其摆动起来,经过几个周期后,也看到与其摆长相等的另一单摆在它的影响下振幅达到最大,而其它单摆几乎不动。

  这个结果表明:单摆的共振与其摆长有关。通过查询资料得知,是否共振与单摆的频率有关,当频率相同时,会产生共振现象;因为其它条件一定时,单摆的频率与其摆长有关,所以摆长相同的单摆会产生共振。

  在上述实验过程中,还可观察到当产生共振时,刚开始振动的单摆振幅逐渐减小,共振的单摆振幅逐渐增大。这表明:在产生共振时,会有能量的吸收与转移。

  在人们的日常生活中,共振也充当着重要的角色,如常用的微波炉。共振在医学上也有应用。任何事物都有两面性,共振有时还会给人类造成巨大危害。这其中最为人们所知晓的便是桥梁垮塌。近几十年来,美国及欧洲等国家和地区还发生了许多起高楼因大风造成的共振而剧烈摇摆的事件。

  在这次物理实验中,我了解到了许多有趣的现象,也学到了许多知识,收获很大。

物理实验报告5

  时间过得真快啊!我以为自己还有很多时间,只是当一个睁眼闭眼的瞬间,一个学期都快结束了,现在我们为一学期的大学物理实验就要画上一个圆满的句号了,本学期从第二周开设了近代物理实验课程,在三个多月的实验中我明白了近代物理实验是一门综合性和技术性很强的课程,回顾这一学期的学习,感觉十分的充实,通过亲自动手,使我进一步了解了物理实验的基本过程和基本方法,为我今后的学习和工作奠定了良好的实验基础。我们所做的实验基本上都是在物理学发展过程中起到决定性作用的著名实验,以及体现科学实验中不可缺少的现代实验技术的实验。它们是我受到了著名物理学家的物理思想和探索精神的熏陶,激发了我的探索和创新精神。同时近代物理实验也是一门包括物理、应用物理、材料科学、光电子科学与技术等系的重要专业技术基础物理实验课程也是我们物理系的专业必修课程。

  我们本来每个人要做共八个实验,后来由于时间关系做了七个实验,我做的七个实验分别是:光纤通讯,光学多道与氢氘,法拉第效应,液晶物性,非线性电路与混沌,高温超导,塞满效应,下面我对每个实验及心得体会做些简单介绍:

  一、光纤通讯:

  本实验主要是通过对光纤的一些特性的探究(包括对光纤耦合效率的测量,光纤数值孔径的测量以及对塑料光纤光纤损耗的测量与计算),了解光纤光学的基础知识。探究相位调制型温度传感器的干涉条纹随温度的变化的移动情况,模拟语电话光通信,

  了解光纤语音通信的基本原理和系统构成。老师讲的也很清楚,本试验在操作上并不是很困难,很易于实现,易于成功。

  二、光学多道与氢氘:

  本实验利用光学多道分析仪,从巴尔末公式出发研究氢氘光谱,了解其谱线特点, 并学习光学多道仪的使用方法及基本的光谱学技术通过此次实验得出了氢原子和氘原子在巴尔末系下的光谱波长,并利用测得的波长值计算出了氢氘的里德伯常量,得到了氢氘光谱的各光谱项及巴耳末系跃迁能级图,计算得出了质子和电子的质量之比。个人觉得这个实验有点太智能化,建议锻炼操作的部分能有所加强。对于一些仪器的原理在实验中没有体现。如果有所体现会比较容易使学生深入理解。数据处理有些麻烦。不过这也正是好好提高自己的分析数据、处理数据能力的好时候、更是理论联系实际的桥梁。

  三、法拉第效应:

  本实验中,我们首先对磁场进行了均匀性测定,进一步测量了磁场和励磁电流之间的关系,利用磁场和励磁电流之间的线性关系,用电流表征磁场的大小;再利用磁光调制器和示波器,采用倍频法找出ZF6、MR3-2样品在不同强度的旋光角θ和磁场强度B的关系,并计算费尔德常数;最后利用MR3样品和石英晶体区分自然旋光和磁致旋光,验证磁致旋光的非互易性。

  四﹑液晶物性:

  本实验主要是通过对液晶盒的扭曲角,电光响应曲线和响应时间的测量,以及对液晶光栅的观察分析,了解液晶在外电场的作用下的变化,以及引起的液晶盒光学性质的变化,并掌握对液晶电光效应测量的方法。本实验中我们研究了液晶的基本物理性质和电光效应等。发现液晶的双折射现象会对旋光角的大小产生的影响,在实验中通过测量液晶盒两面锚泊方向的差值,得到液晶盒扭曲角的大小为125度;测量了液晶的响应时间。观察液晶光栅的衍射现象,在“常黑模式”和“常白模式”下分别测量了液晶升压和降压过程的电光响应曲线,求得了阈值电压、饱和电压和阈值锐度。并且比较了升压降压过程中阈值锐度的差别。我们一开始做的很慢,不过老师讲得很清楚,后来我们很快就做出来了,

  五、非线性电路与混沌:

  本实验通过测量非线性电阻的I-U特性曲线,了解非线性电阻特性,从而搭建出典型的非线性电路—蔡氏振荡电路,通过改变其状态参数,观察到混沌的产生,周期运动,倍周期与分岔,点吸引子,双吸引子,环吸引子,周期窗口的物理图像,并研究其费根鲍姆常数。最后,实验将两个蔡氏电路通过一个单相耦合系统连接并最终研究其混东同步现象。实验过程还可以,数据处理有点难,后来慢慢思考,最终还是处理好了,

  六、高温超导:

  本实验利用液氮创造低温环境,测量了高温超导材料样品的超导转变临界温度为90.。88K,并在实验同时对温差电偶温度计以及硅半导体温度计进行了温度定标,测得在实验的温度范围内,在磁悬浮实验上,我们分别测量了无磁场条件下相变(零场冷)的高温超导体样品的以及有磁场条件下相变(场冷)的高温超导体样品的磁悬浮力与距离的关系,认为此超导体在强磁场下进入了混合态,而在场冷条件下的实验证实了我们的假设。这次实验我们所作实验中最早结束的一个实验,不过在示波器中调波形时花了点时间,最终还是很快就做完了。

  七、塞满效应:

  这个实验是我最后一次做的实验,也是最晚结束的一个实验,因为我们去做实验的时候实验室没电了,于是我们等把电路修好后开始做实验了,于是做到晚上11点才结束了,本实验运用光栅摄谱仪和阿贝比长仪,采用摄谱法观测Hg谱线的分裂情况,并以此对外加磁感应强度进行估测。本次实验运用光栅摄谱法观察到了在外磁场下Hg谱线的分裂情况,直接验证了塞曼效应;还以Fe谱线作为标准谱,用内插法测得了各谱线的波长,并以此故测了外加磁感应强度B,基本实现了定量验证和分析,本实验数据处理比较容易,老师讲得也很清楚。

  我们大家都知道实践是检验真理的唯一标准,近代物理实验属于学科基础课程,通过这次近代物理实验课程的学习,使我们认识到了一整套科学缜密的实验方法,对于我开发我们的智力,培养我们分析解决实际问题的能力,有着十分重要的意义,对于我们科学的逻辑思维的形成有着积极的现实意义,除此之外,使我从思想上牢记做任何事之前就像做实验一样只有好好预习才能做好实验;实验中如果出现问题应该耐心、细致的进行分析,并且要考虑实验仪器本身的因素,有时也应该咨询老师;实验通过做实验的艰辛和处理数据的繁琐让我体会到前辈们是怎么一步一艰辛的在科学之路上进行探索,他们的严谨、求实之精神必然激励着我们在今后的人生之路上向他们那样,孜孜不倦、勇于进取。

  最后感谢每位实验老师,您们辛苦啦!每次都跟我们一起在实验室里待到很晚,谢谢您们!

物理实验报告6

  一、将一饮料瓶底部扎几个细孔,再往饮料瓶中到入适量的水,此时会发现瓶底处有水流出,可以印证液体对容器底部有压强。继续迅速把饮料瓶中灌满水,然后拧紧瓶盖,这时可观察到饮料瓶底部并没有水流出。如果再拧松瓶盖,又发现水流了出来。这说明是大气压作用形成的这一现象。

  二、另取一空饮料瓶灌满水后拧紧平盖,然后用酒精灯加热一钢针。轻轻的在饮料瓶下部侧壁烫一细孔(注意烫孔时不要用力挤按饮料瓶)。当扎完小孔后会发现并没有水流出,在第一个孔的相同高度处,任意位置再烫一个细孔后发现依然没有水流出来。这是由于大气压的作用的结果,并且证明了大气压是各个方向都存在的,与液体压强特点形成对比。之后在前两个细孔的上方再烫一细孔后,发现下面的细孔向外流水,而上面的细孔不向外流水,并且有空气从此处进入饮料瓶内上方。如果拧开饮料瓶的瓶盖会发现三孔都会流水。且小孔位置越靠近瓶底,水柱喷的越远。

  三、再取一饮料瓶灌满水并拧紧瓶盖后,把它倒置在盛有足够多水的玻璃水槽中,在水中把瓶盖拧下来,抓住瓶子向上提,但不露出水面发现瓶里的水并不落回水槽中。(可以换更高的饮料瓶做“对比实验”,为托里拆利实验的引入打好基础。)还可以在此实验的基础上,在瓶底打孔,立刻发现瓶里的水流回水槽中。原因是瓶子内、外均有大气压相互抵消,水柱在本身重力的作用下流回水槽。

  四、还可以选用易拉罐,拉盖不要全部拉开,开口尽量小一些。倒净饮料后用电吹风对罐体高温加热一段时间后,把拉口处用橡皮泥封好,确保不漏气。再用冷水浇在易拉罐上,一会听到易拉罐被压变形的声音,同时看到易拉罐上有的地方被压瘪。说明气体热胀冷缩、也证明了大气压的存在。

物理实验报告7

  实验课程名称 近代物理实验

  实验项目名称 盖革—米勒计数管的研究

  姓 名 王仲洪

  学 号135012012019

  一、实验目的

  1.了解盖革——弥勒计数管的结构、原理及特性。

  2.测量盖革——弥勒计数管坪曲线,并正确选择其工作电压。

  3.测量盖革——弥勒计数管的死时间、恢复时间和分辨时间。

  二、使用仪器、材料

  G-M计数管(F5365计数管探头),前置放大器,自动定标器(FH46313Z智能定标),放射源2个。

  三、实验原理

  盖革——弥勒计数管简称G-M计数管,是核辐射探测器的一种类型,它只能测定核辐射粒子的数目,而不能探测粒子的能量。它具有价格低廉、设备简单、使用方便等优点,被广泛用于放射测量的工作中。 G-M计数有各种不同的结构,最常见的有钟罩形β计数管和圆柱形计数管两种,这两种计数管都是由圆柱状的阴极和装在轴线上的阳极丝密封在玻璃管内而构成的,玻璃管内充一定量的某种气体,例如,惰性气体氩、氖等,充气的气压比大气压低。由于β射线容易被物质所吸收,所以β计数管在制造上安装了一层薄的云母做成的窗,以减少β射线通过时引起的吸收,而射线的贯穿能力强,可以不设此窗

  圆柱形G-M计数管

  计数管系统示意图

  在放射性强度不变的情况下,改变计数管电极上的电压,由定标器记录下的相应计数率(单位时间内的计数次数)可得如图所示的曲线,由于此曲线有一段比较平坦区域,因此把此曲线称为坪特性曲线,把这个平坦的部分(V1-V2)称为坪区;V0称为起始电压,V1称为阈电压,△V=V2-V1称为长度,在坪区内电压每升高1伏,计数率增加的百分数称为坪坡度。

  G-M计数管的坪曲线

  由于正离子鞘的存在,因而减弱了阳极附近的电场,此时若再有粒子射入计数管,就不会引起计数管放电,定标器就没有计数,随着正离子鞘向阴极移动,阴极附近的电场就逐渐得到恢复,当正离子鞘到达计数管半径r0处时,阳极附近电场刚刚恢复到可以使进入计数管的粒子引起计数管放电,这段时间称为计数管的死时间,以td来表示;正离子鞘从r0到阴极的一段时间,我们称为恢复时间,以tr表示。在恢复时间内由于

  电场还没有完全恢复,所以粒子射入计数管后虽然也能引起放电,但脉冲幅度较小,当脉冲幅度小于定标器灵敏阈时,则仍然不能被定标器记录下来,随着电场的恢复,脉冲幅度也随之增大,如果在τ时间以后出现的脉冲能被定标器记录下来,那么τ就称为分辨时间。

  示波器上观察到的死时间及分辨时间

  在工作电压下,没有放射源时所测得的计数率称为G-M计数管的本底。它是由于宇宙射线、空气中及周围微量放射性以及制作管子用的物质中放射杂质所引起的。所以我们要在实验测量的计数率数据中减去本底计数率才能得到真正的计数率。

  实验证明,在对长寿命放射性强度进行多次重复测量时,即使条件相同,每次测量的结果仍然不同;然而,每次结果都围绕着某一个平均值上下涨落,服从一定的统计规律。假如在时间τ内,核衰变平均数是n,每秒核衰变数为n的出现几率p(n)服从统计规律的泊松分布

  四、实验步骤

  1.测量G-M计数管坪曲线。

  (1)将放射源放在计数管支架的托盘上,并对准计数管的中央部位,在测坪曲线的整个过程中,放射源位置保持不变。

  (2)检查连接线及各个开关位置无误后,打开定标器的电源开关,将定标器预热数分钟,然后将高压细调旋扭开关旋到最小,打开高压开关,细调高压值,使计数管刚好开始计数。

  (3)将定标器的甄别阈调0.2伏,细调高压,仔细测出起始电压(测量两次,取平均值),然后电压每升高10伏测量十次,每次测量时间为10秒钟,直到发现计数增加时(坪长已测完),应立即降低工作电压,以免发生连续放电,将计数管损坏。

  (4)将实验数据列入表中,取十次平均值,并用坐标纸画出该计数管的坪曲线,确定其起始电压,坪长度和坪坡度,然后选定其工作电压。

  2.双源法测计数管分辨时间τ。

  (1)准备好两个放射性强度大致相等的源,

  (2)测本底300s。

  (3)放上放射源1,测其放射强度1000s。

  (4)放上放射源2,测量源1加源2的放射强度20xxs(放上放射源2时切勿碰动源1所在的位置)。

  (5)取出放射源1(切勿碰动源2),测源2的放射强度1000s。

  (6)取出源2,再测本底300s。

  (7)根据公式(5—3)求出计数管分辨时间τ。

  3.验证泊松分布:用本底计数来验证泊松分布,时间以3秒为单位,测量次数为500次,用实验所得的平均值n,根据泊松公式作出泊松分布的'理论曲线,并将实验曲线与理论曲线比较。

  五、注意事项

  (1)使用放射源应按规定操作,不得马虎。不能用手直接接触放射源,要移动放射源时,一定要用夹子。

  (2)注意保护计数管。计数管的高压不要超过450伏,以免烧毁计数

物理实验报告8

  1、提出问题:

  声音的强弱(声音的响度)可能

  1)、与声源振动的幅度(振幅)有关;

  2)、与人离声源的距离有关。

  2、猜想或假设:

  1)、声源的振幅越大,响度越大;

  2)、人离声源的距离越近,人听到的声音响度越大。

  3、制定计划与设计方案(用控制变量法)如,

  探究1)声音的响度与声源振动的幅度(振幅)的关系:

  考虑让人与声源的距离相同,使声源的振幅不同, 看在声源的振幅大小不同时,听声音响度大小的情况怎样?

  探究2)响度与人离声源距的离大小关系

  考虑让声源的振幅相同,使人离声源距离不同,看在人离声源的距离大小不同时,听声音响度大小的情况怎样?

  4、进行实验与收集证据

  探究1)选一只鼓,在鼓上放一小纸屑,让人离声源的距离0.5米(不变)

  (1)第一次轻轻地敲击一下鼓,看到小纸屑跳起(如0.5厘米),听到一个响度不太大的声音;

  (2)第二次重重地敲击一下鼓,看到小纸屑跳起(如1.5厘米),听到一个响度很大的声音。

  结论:人离声源的距离相同时,声源的振幅越大,声音的响度越大。

  探究2)的实验过程与上类似

  结论是:声源的振幅相同时,人离声源的距离越近,人听到的声音响度越大。

  5、自我评估:

  这两个结论经得起验证。如,我们要让铃的声音很响,我们可以用力去打铃;汽车鸣笛,我们离汽车越近,听到的声音越响。

  6、交流与应用

  如果我们声音小了,听众可能听不见我们的说话声,我们可以考虑:

  1)让说话的声音大一些(声带的振幅大了);

  2)与听众的距离近一些。

物理实验报告9

  拉伸实验是测定材料在常温静载下机械性能的最基本和重要的实验之一。这不仅因为拉伸实验简便易行,便于分析,且测试技术较为成熟。更重要的是,工程设计中所选用的材料的强度、塑形和弹性模量等机械指标,大多数是以拉伸实验为主要依据。

  实验目的(二级标题左起空两格,四号黑体,题后为句号)

  1、验证胡可定律,测定低碳钢的E。

  2、测定低碳钢拉伸时的强度性能指标:屈服应力Rel和抗拉强度Rm。

  3、测定低碳钢拉伸时的塑性性能指标:伸长率A和断面收缩率Z

  4、测定灰铸铁拉伸时的强度性能指标:抗拉强度Rm

  5、绘制低碳钢和灰铸铁拉伸图,比较低碳钢与灰铸铁在拉伸树的力学性能和破坏形式。

  实验设备和仪器

  万能试验机、游标卡尺,引伸仪

  实验试样

  实验原理

  按我国目前执行的国家GB/T 228—20xx标准——《金属材料室温拉伸试验方法》的规定,在室温10℃~35℃的范围内进行试验。

  将试样安装在试验机的夹头中,固定引伸仪,然后开动试验机,使试样受到缓慢增加的拉力(应根据材料性能和试验目的确定拉伸速度),直到拉断为止,并利用试验机的自动绘图装置绘出材料的拉伸图(图2-2所示)。

  应当指出,试验机自动绘图装置绘出的拉伸变形ΔL主要是整个试样(不只是标距部分)的伸长,还包括机器的弹性变形和试样在夹头中的滑动等因素。由于试样开始受力时,头部在夹头内的滑动较大,故绘出的拉伸图最初一段是曲线。

  1.低碳钢(典型的塑性材料)

  当拉力较小时,试样伸长量与力成正比增加,保持直线关系,拉力超过FP

  后拉伸曲线将由直变曲。保持直线关系的最大拉力就是材料比例极限的力值FP。

  在FP的上方附近有一点是Fc,若拉力小于Fc而卸载时,卸载后试样立刻恢复原状,若拉力大于Fc后再卸载,则试件只能部分恢复,保留的残余变形即为塑性变形,因而Fc是代表材料弹性极限的力值。

  当拉力增加到一定程度时,试验机的示力指针(主动针)开始摆动或停止不动,拉伸图上出现锯齿状或平台,这说明此时试样所受的拉力几乎不变但变形却在继续,这种现象称为材料的屈服。低碳钢的屈服阶段常呈锯齿状,其上屈服点B′受变形速度及试样形式等因素的影响较大,而下屈服点B则比较稳定(因此工程上常以其下屈服点B所对应的力值FeL作为材料屈服时的力值)。确定屈服力值时,必须注意观察读数表盘上测力指针的转动情况,读取测力度盘指针首次回转前指示的最大力FeH(上屈服荷载)和不计初瞬时效应时屈服阶段中的最小力FeL(下屈服荷载)或首次停止转动指示的恒定力FeL(下屈服荷载),将其分别除以试样的原始横截面积(S0)便可得到上屈服强度ReH和下屈服强度ReL。

  即ReH=FeH/S0 ReL=FeL/S0屈服阶段过后,虽然变形仍继续增大,但力值也随之增加,拉伸曲线又继续上升,这说明材料又恢复了抵抗变形的能力,这种现象称为材料的强化。在强化阶段内,试样的变形主要是塑性变形,比弹性阶段内试样的变形大得多,在达到最大力Fm之前,试样标距范围内的变形是均匀的,拉伸曲线是一段平缓上升的曲线,这时可明显地看到整个试样的横向尺寸在缩小。此最大力Fm为材料的抗拉强度力值,由公式Rm=Fm/S0即可得到材料的抗拉强度Rm。

  如果在材料的强化阶段内卸载后再加载,直到试样拉断,则所得到的曲线如图2-3所示。卸载时曲线并不沿原拉伸曲线卸回,而是沿近乎平行于弹性阶段的直线卸回,这说明卸载前试样中除了有塑性变形外,还有一部分弹性变形;卸载后再继续加载,曲线几乎沿卸载路径变化,然后继续强化变形,就像没有卸载一样,这种现象称为材料的冷作硬化。显然,冷作硬化提高了材料的比例极限和屈服极限,但材料的塑性却相应降低。

  当荷载达到最大力Fm后,示力指针由最大力Fm缓慢回转时,试样上某一部位开始产生局部伸长和颈缩,在颈缩发生部位,横截面面积急剧缩小,继续拉伸所需的力也迅速减小,拉伸曲线开始下降,直至试样断裂。此时通过测量试样断裂后的标距长度Lu和断口处最小直径du,计算断后最小截面积(Su),由计算公式ALuL0SSu100%Z0100%L0S0、即可得到试样的断后伸长率A和断面收缩率Z。

  2 铸铁(典型的脆性材料)

  脆性材料是指断后伸长率A<5%的材料,其从开始承受拉力直至试样被拉断,变形都很小。而且,大多数脆性材料在拉伸时的应力-应变曲线上都没有明显的直线段,几乎没有塑性变形,也不会出现屈服和颈缩等现象(如图2-2b所示),只有断裂时的应力值——强度极限。

  铸铁试样在承受拉力、变形极小时,就达到最大力Fm而突然发生断裂,其抗拉强度也远小于低碳钢的抗拉强度。同样,由公式Rm=Fm/S0即可得到其抗拉强度Rm,而由公式ALuL0 L0100%则可求得其断后伸长率A。

  实验结果与截图

物理实验报告10

  一、演示目的

  气体放电存在多种形式,如电晕放电、电弧放电和火花放电等,通过此演示实验观察火花放电的发生过程及条件。

  二、原理

  首先让尖端电极和球型电极与平板电极的距离相等。尖端电极放电,而球型电极未放电。这是由于电荷在导体上的分布与导体的曲率半径有关。导体上曲率半径越小的地方电荷积聚越多(尖端电极处),两极之间的电场越强,空气层被击穿。反之越少(球型电极处),两极之间的电场越弱,空气层未被击穿。当尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离时,其间的电场较弱,不能击穿空气层。而此时球型电极与平板电极之间的距离最近,放电只能在此处发生。

  三、装置

  一个尖端电极和一个球型电极及平板电极。

  四、现象演示

  让尖端电极和球型电极与平板电极的距离相等。尖端电极放电,而球型电极未放电。接着让尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离,放电在球型电极与平板电极之间发生

  五、讨论与思考

  雷电暴风雨时,最好不要在空旷平坦的田野上行走。为什么?

物理实验报告11

  探究课题:探究平面镜成像的特点.

  一、提出问题:

  平面镜成的是实像还是虚像?是放大的还是缩小的像?所成的像的位置是在什么地方?

  二、猜想与假设:

  平面镜成的是虚像.像的大小与物的大小相等.像与物分别是在平面镜的两侧.

  三、制定计划与设计方案:

  实验原理是光的反射规律.

  所需器材:蜡烛(两只),平面镜(能透光的),刻度尺,白纸,火柴,

  实验步骤:

  1.在桌面上平铺一张16开的白纸,在白纸的中线上用铅笔画上一条直线,把平面镜垂直立在这条直线上.

  2.在平面镜的一侧点燃蜡烛,从这一侧可以看到平面镜中所成的点燃蜡烛的像,用不透光的纸遮挡平面镜的背面,发现像仍然存在,说明光线并没有透过平面镜,因而证明平面镜背后所成的像并不是实际光线的会聚,是虚像.

  3.拿下遮光纸,在平面镜的背后放上一只未点燃的蜡烛,当所放蜡烛大小高度与点燃蜡烛的高度相等时,可以看到背后未点燃蜡烛也好像被点燃了.说明背后所成像的大小与物体的大小相等.

  4.用铅笔分别记下点燃蜡烛与未点燃蜡烛的位置,移开平面镜和蜡烛,用刻度尺分别量出白纸上所作的记号,量出点燃蜡烛到平面镜的距离和未点燃蜡烛(即像)到平面镜的距离.比较两个距离的大小.发现是相等的.

  四、自我评估:

  该实验过程是合理的,所得结论也是正确无误.做该实验时最好是在暗室进行,现象更加明显.误差方面应该是没有什么误差,关键在于实验者要认真仔细的操作,使用刻度尺时要认真测量.

  五、交流与应用:

  通过该实验我们已经得到的结论是,物体在平面镜中所成的像是虚像,像的大小与物体的大小相等,像到平面镜的距离与物体到平面镜的距离相等.像与物体的连线被平面镜垂直且平分.例如,我们站在穿衣镜前时,我们看穿衣镜中自己的像是虚像,像到镜面的距离与人到镜面的距离是相等的,当我们人向平面镜走近时,会看到镜中的像也在向我们走近.我们还可以解释为什么看到水中的物像是倒影.平静的水面其实也是平面镜.等等.

物理实验报告12

  【实验目的】

  观察光栅的衍射光谱,掌握用分光计和透射光栅测光波波长的方法。

  【实验仪器】

  分光计,透射光栅,钠光灯,白炽灯。

  【实验原理】

  光栅是一种非常好的分光元件,它可以把不同波长的光分开并形成明亮细窄的谱线。

  光栅分透射光栅和反射光栅两类,本实验采用透射光栅,它是在一块透明的屏板上刻上大量相互平行等宽而又等间距刻痕的元件,刻痕处不透光,未刻处透光,于是在屏板上就形成了大量等宽而又等间距的狭缝。刻痕和狭缝的宽度之和称为光栅常数,用d 表示。

  由光栅衍射的理论可知,当一束平行光垂直地投射到光栅平面上时,透过每一狭缝的光都会发生单缝衍射,同时透过所有狭缝的光又会彼此产生干涉,光栅衍射光谱的强度由单缝衍射和缝间干涉两因素共同决定。用会聚透镜可将光栅的衍射光谱会聚于透镜的焦平面上。凡衍射角满足以下条件, ±1, ±2, …的衍射光在该衍射角方向上将会得到加强而产生明条纹,其它方向的光将全部或部分抵消。式(10)称为光栅方程。式中d为光栅的光栅常数,θ为衍射角,λ为光波波长。当k=0时,θ= 0得到零级明纹。当k = ±1, ±2 …时,将得到对称分立在零级条纹两侧的一级,二级 … 明纹。

  实验中若测出第k级明纹的衍射角θ,光栅常数d已知,就可用光栅方程计算出待测光波波长λ。

  【实验内容与步骤】

  分光计的调整

  分光计的调整方法见实验1。

  用光栅衍射测光的波长

  (1)要利用光栅方程(10)测光波波长,就必须调节光栅平面使其与平行光管和望远镜的光轴垂直。

  先用钠光灯照亮平行光管的狭缝,使望远镜目镜中的分划板上的中心垂线对准狭缝的像,然后固定望远镜。将装有光栅的光栅支架置于载物台上,使其一端对准调平螺丝a ,一端置于另两个调平螺丝b、c的中点,如图12所示,旋转游标盘并调节调平螺丝b或c ,当从光栅平面反射回来的“十”字像与分划板上方的十字线重合时,如图13所示,固定游标盘。

  物理实验报告 ·化学实验报告 ·生物实验报告 ·实验报告格式 ·实验报告模板

  图12 光栅支架的位置 图13 分划板

  (2)调节光栅刻痕与转轴平行。

  用钠光灯照亮狭缝,松开望远镜紧固螺丝,转动望远镜可观察到0级光谱两侧的±1、±2 级衍射光谱,调节调平螺丝a (不得动b、c)使两侧的光谱线的中点与分划板中央十字线的中心重合,即使两侧的光谱线等高。重复(1)、(2)的调节,直到两个条件均满足为止。

  (3)测钠黄光的波长

  ① 转动望远镜,找到零级像并使之与分划板上的中心垂线重合,读出刻度盘上对径方向上的两个角度θ0和θ0/,并记入表4 中。

  ② 右转望远镜,找到一级像,并使之与分划板上的中心垂线重合,读出刻度盘上对径方向上的两个角度θ右和θ右/,并记入表4中。

  ③ 左转望远镜,找到另一侧的一级像,并使之与分划板上的中心垂线重合,读出刻度盘上对径方向上的两个角度θ左和θ左/,并记入表4中。

  观察光栅的衍射光谱。

  将光源换成复合光光源(白炽灯)通过望远镜观察光栅的衍射光谱。

  【注意事项】

  分光计的调节十分费时,调节好后,实验时不要随意变动,以免重新调节而影响实验的进行。

  实验用的光栅是由明胶制成的复制光栅,衍射光栅玻璃片上的明胶部位,不得用手触摸或纸擦,以免损坏其表面刻痕。

  转动望远镜前,要松开固定它的螺丝;转动望远镜时,手应持着其支架转动,不能用手持着望远镜转动。

  【数据记录及处理】

  表4 一级谱线的衍射角

  零级像位置

  左传一级像

  位置

  偏转角

  右转一级像

  位置

  偏转角

  偏转角平均值

  光栅常数

  钠光的波长λ0 = 589·

  根据式(10) K=1, λ

  相对误差

  【思考题】

  1 什么是最小偏向角?如何找到最小偏向角?

  2 分光计的主要部件有哪四个?分别起什么作用?

  3 调节望远镜光轴垂直于分光计中心轴时很重要的一项工作是什么?如何才能确保在望远镜中能看到由双面反射镜反射回来的绿十字叉丝像?

  4 为什么利用光栅测光波波长时要使平行光管和望远镜的光轴与光栅平面垂直?

  5 用复合光源做实验时观察到了什么现象,怎样解释这个现象?

物理实验报告13

  探究水沸腾时温度变化的特点

  实验目的:

  观察沸腾现象,找出水沸腾时温度的变化规律。

  实验器材:

  铁架台、酒精灯、石棉网、温度计、烧杯(50ml),火柴,中心有孔的纸板、水、秒表。

  实验步骤:

  1、按上图组装器材。在烧杯中加入30ml的水。

  2、点燃酒精灯给水加热。当水沸腾,即水温接近90℃时,每隔0.5min在表格中记录温度计的示数T,记录10次数据。

  3、熄灭酒精灯,停止加热。

  4、冷却后再整理器材。

  5、以温度T为横坐标,时间t为纵坐标,在下图中的方格纸上描点,再把这些点连接起来,从而绘制成水沸腾时温度与时间关系的图像;

  6、整理、分析实验数据及其图像,归纳出水沸腾时温度变化的特点。

物理实验报告14

  ____级__班__号

  姓名_________ 实验日期____年__月__日

  实验名称

  探究凸透镜的成像特点

  实验目的

  探究凸透镜成放大和缩小实像的条件

  实验器材

  标明焦距的凸透镜、光屏、蜡烛、火柴、粉笔 实验原理

  实验步骤

  1.提出问题:

  凸透镜成缩小实像需要什么条件?

  2.猜想与假设:

  (1)凸透镜成缩小实像时,物距u_______2f。(“大于”、“小于”或“等于”)

  (2)凸透镜成放大实像时,物距u_______2f。(“大于”、“小于”或“等于”)

  3.设计并进行实验:

  (1)检查器材,了解凸透镜焦距,并记录。

  (2)安装光具座,调节凸透镜、光屏、蜡烛高度一致。

  (3)找出2倍焦距点,移动物体到2倍焦距以外某处,再移动光屏直到屏幕上成倒立缩小的清晰实像的为止,记下此时对应的物距。

  (4)找出2倍焦距点,移动物体到2倍焦距以内某处,再移动光屏直到屏幕上成倒立放大的清晰实像的为止,记下此时对应的物距。

  (5)整理器材。

物理实验报告15

  一、拉伸实验报告标准答案

  实验目的:见教材。实验仪器见教材。

  实验结果及数据处理:例:(一)低碳钢试件

  强度指标:

  Ps=xx22.1xxxKN屈服应力ζs= Ps/A xx273.8xxxMPa P b =xx33.2xxxKN强度极限ζb= Pb /A xx411.3xxxMPa

  塑性指标:伸长率L1—LL100%AA1A33.24 %

  面积收缩率100%

  68.40 %

  低碳钢拉伸图:

  (二)铸铁试件

  强度指标:

  最大载荷Pb =xx14.4xxx KN

  强度极限ζb= Pb / A = x177.7xx M Pa

  问题讨论:

  1、为何在拉伸试验中必须采用标准试件或比例试件,材料相同而长短不同的试件延伸率是否相同?

  答:拉伸实验中延伸率的大小与材料有关,同时与试件的标距长度有关。试件局部变形较大的断口部分,在不同长度的标距中所占比例也不同。因此拉伸试验中必须采用标准试件或比例试件,这样其有关性质才具可比性。

  材料相同而长短不同的试件通常情况下延伸率是不同的(横截面面积与长度存在某种特殊比例关系除外)。

  2、分析比较两种材料在拉伸时的力学性能及断口特征。

  答:试件在拉伸时铸铁延伸率小表现为脆性,低碳钢延伸率大表现为塑性;低碳钢具有屈服现象,铸铁无。低碳钢断口为直径缩小的杯锥状,且有450的剪切唇,断口组织为暗灰色纤维状组织。铸铁断口为横断面,为闪光的结晶状组织。

  教师签字:x xxxxxxx

  日期:xxx xxxxx

  二、压缩实验报告标准答案

  实验目的:见教材。实验原理:见教材。

  实验数据记录及处理:例:(一)试验记录及计算结果

  问题讨论:

  分析铸铁试件压缩破坏的原因。

  答:铸铁试件压缩破坏,其断口与轴线成45°~50°夹角,在断口位置剪应力已达到其抵抗的最大极限值,抗剪先于抗压达到极限,因而发生斜面剪切破坏。

【物理实验报告】相关文章:

物理实验报告-实验报告01-26

物理实验报告07-19

物理实验报告12-04

初中物理实验报告-实验报告01-27

大学物理实验报告-实验报告01-26

初中物理实验报告04-30

初中物理实验报告12-06

物理实验报告格式12-04

物理实验报告模板10-09

初中物理的实验报告10-09