密封外套零件高效加工工艺探索论文
摘要:本文以某重点型号机密封外套零件高效加工为中心,集中笔墨从数控机床以及硬质合金刀具的应用、电加工参数优化、刀具国产化等几个方面入手,论述了高温合金实现真正意义上的高效加工——优质、高效、低耗加工的工艺方案设计、验证和取得的实效。
关键词:高效加工;高温合金;陶瓷刀片;刀具国产化
引言
密封外套类零件是重点型号发动机上的重要转动部件。该类零件通常为薄壁环形零件,配合止口处尺寸最薄,只有2mm。零件整体结构复杂,在零件左端端面处分布有12处端面槽,在零件右端有多处与回转轴线呈60°夹角的深腔斜槽,斜槽、花边槽分别与端面孔、螺纹孔有严格的角向位置关系。零件材料为难加工材料镍基变形高温合金GH4169,这种材料的切削性差,切削变形量大,切削压力大,切削时切削温度较高,刀具极易磨损,表面质量和尺寸精度难以保证。零件原有的加工路线均是按照普通设备设计完成,需要30几道工序,生产准备时间、生产周期均较长,细车、精车工序也是在普通设备上应用普通焊接车刀加工而成,加工效率低、加工变形大、尺寸精度及技术条件不易保证。后续的铣加工工序均采用进口合金刀具加工而成,刀具消耗1500元/件。12处端面深腔斜槽需采用电火花成型设备加工,加工效率低,继续工艺改进来提高该类零件的加工周期及加工效率。
1、工艺现状分析
1.1提高车、铣加工效率低
原有加工路线入下:粗车第一面→粗车第二面→细车端面外圆→车装夹基准面→半精车外圆→车工艺台→精车大头内孔→精车大头外圆→划线→铣窝→去毛刺→钻孔12-φ6.5→去毛刺→铣花边→钻孔3-φ5.08→攻丝→去毛刺→锪倒角。在密封外套的加工过程中,零件反复、多次的重复装夹定位,内外型面与工艺基准均不是一次加工而成,零件尺寸及各技术条件难以保证。零件反复、多次装夹定位,使得生产准备时间、工序间周转等待时间过长,生产管理成本大。因此,需集中加工工序,采用数控设备,以实现工序集中,提高零件的加工精度及加工效率。
1.2采用焊接车刀加工效率低
GH4169材料与普通钢件材料相比,其机械加工性能差,属难加工的材料,切削过程中需要消耗更多的能量,加工的主要特点如下。(1)切削力大:高温合金的切削力为普通碳钢材料的'两倍以上。(2)切削温度高:切削高温合金的过程中,变形抗力大,刀面与切屑和工件间的摩擦剧烈,单位切削功率大,消耗的功率多,产生切削热量大。(3)刀具磨损剧烈:由于切削温度高,材料硬度高,黏结磨损现象严重,产生积屑瘤和棱刺,磨损刀具。由于以上的诸多原因的影响,普通焊接车刀在加工难加工材料GH4169时,加工效率低,刀具磨损严重,因此应优先选择具有高的抗氧化性、耐磨性的刀片材料。
1.3电加工12处斜槽
由于电火花蜂窝磨设备没有专业系统,不能提供可供选择的电参数配合,人工设定的加工参数不够优化,加工时间为8h/件,加工周期大,影响零件交付节点。因此,需增大并优化电加工参数,以提高加工效率。
1.4优化铣加工刀具
需通过加工试验,选择适宜的国产化刀具,以降低零件在加工过程中的切削成本。综合以上各种情况进行分析,可分别从数控机床、陶瓷硬质合金刀片的应用、电加工参数的优化、以及刀具国产化等方面对零件进行高效、优质、低耗加工的工艺研究。
2、高效加工方案设计与验证
2.1数控机床的应用
改变传统的普通车、铣加工方法,在TUR30、TU30等数控车床、加工中心上,实现密封环零件的半精加工、精加工、铣削加工等工序的集中,调整后加工路线如下:粗车第一面→粗车第二面→车装夹基准→半精车外圆、内孔→车大头内孔外圆→铣花边、钻孔、锪倒角→去毛刺→攻丝→去毛刺。经密封环零件的加工验证,在加工中心上一次装夹,可完成铣花边、钻孔、铣槽、锪倒角等全部铣加工的工作内容。改进后每件零件减少加工时间19h,减少生产准备时间6h,提高加工效率2.5倍以上。
2.2采用机夹刀具实现高效加工
零件外圆型面的特殊结构,决定了该零件在半精车工序的加工过程中必须先去除大部分的加工余量,以确保零件在精车工序中的加工余量降低、加工变形量小。陶瓷材料的机加刀具,通常具有高硬度、良好的耐磨性能、耐热性、化学稳定性优良、并且不易与其他金属材料产生黏结等特点,适宜GH4169这种镍基高温合金材料的大余量切削加工。在加工过程中,我们选用肯纳的陶瓷刀具对零件进行加工验证,该类型的刀片刃口处的耐磨性能好,抗机械冲击力优良,在加工试验的过程中,转速115rpm、进给量0.2mm/r、切削深度为1mm。去除零件外圆的大部分余量仅用了35min,材料移除率为16cm3/min,零件的加工效率提高了5倍以上,并且各型面尺寸精度高、表面质量好。密封外套的内孔型面及外圆型面在精车试验过程中,均采用伊斯卡的硬质合金刀片来完成零件的加工验证。适宜转速为70rpm、进给量0.12mm/r、切削深度0.4mm,用时分别为40min、60min。该加工参数与零件在普通车床上使用普通焊接车刀加工相比较,加工效率分别提高了1.3倍和1倍以上。
2.3优化电加工参数
电加工生产率是指在单位时间内工件的蚀除量,可用公式表示Vw=KafeWU表示。其中Ka与加工条件有关的系数,fe脉冲放电频率,WU单个脉冲能量。可见,提高电加工效率途径在于提高单个脉冲能量、脉冲频率和加工系数。
2.3.1提高单个脉冲能量所谓提高单个脉冲能量,就是指在电加工过程中,提高脉冲电压、电流,改善放电波形。通过调整电加工参数,将脉冲宽度由250μs提高到300μs,低压电流10.0A提高到13.0A,高压电流0.5A提高到1.0A,包络宽度0μs提高到2000μs,包络停歇提高到1000μs。
2.3.2提高放电频率所谓提高放电频率,就是指压缩脉冲停歇的时间。但如果脉冲停歇时间过短,就会使工作液来不及抵消电离而恢复绝缘,导致连续的电弧放电,从而破坏放电过程。所以必须注意选择适当的脉冲宽度与停歇时间的比值,即选择合适的脉宽比。通过调整脉宽比,将脉冲宽度250μs调整为300μs、脉冲停歇200μs调整为100μs。
2.3.3提高加工系数包括合理选择电极材料、工作液等,以改善加工条件。我们沿用紫铜成型电极和煤油作为工作介质。
2.3.4加大电参数考虑到成型电极加工过程中放电面积逐渐变大,由底平面放电,变为底平面、两侧面和后斜面同时放电,脉冲宽度和电流应随之变大,以提高加工效率。在增大电加工参数的同时,必须调整成型电极的尺寸,以适应增大的放电间隙,加工出合格零件,经加工试验,将电极宽度由11.55mm~11.65mm改为11.5+0.050mm为最佳。最终4h加工出合格零件,节省加工时间4h/件,加工效率提高1倍。
参考文献
[1]郭永丰.电火花及线切割加工有问必答300例[M].哈尔滨:哈尔滨工业大学出版社,2008.
[2]周旭光.线切割及电火花编程与操作实训教程[M].北京:清华大学出版社,2006.